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Abstract

This paper examines the relationship between productive government expenditure and
economic growth. An R&D-based model of endogenous growth is used in which agents have
heterogeneous entrepreneurial abilities. We show that if the entrepreneurial ability follows
a long- and fat-tailed distribution, then the relationship between government ex-penditure/
GDP and economic growth rate is depicted by an inverted U-shaped curve with a flat top.
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1 Introduction

Does government expenditure size affect long-term growth? What is the optimal government

spending level that maximizes growth? Economists have long been discussing these questions

through substantial amount of accumulated research. Since the 2008 European sovereign debt

crisis, this topic has been the center of debate on fiscal policy.

Barro’s (1990) seminal work constructs an endogenous growth model in which government

spending is an input in final-good production and taxes are distortionary. Barro demonstrats

the possibility of an inverted U-shaped relationship between the size of government expenditure

and economic growth. Greater government expenditure means a larger input in the final-good

production that incentivizes private investment. However, larger government expenditure also

means a higher tax rate, which lowers the net return to private capital, thus reducing private

investment. When the size of government expenditure is initially small, the first positive effect

dominates the second negative effect. On contrary, when high, the second effect dominates

the first one. Barro’s (1990) endogenous growth model has been extended and examined, with

similar results (Barro and Sala-i-Martin, 1992; Futagami et al., 1992; Turnovsky, 1996; Glomm

and Ravikumar, 1997; Fisher and Turnovsky, 1998).

Numerous studies have empirically examined the relationship between government expen-

diture size and economic growth based on the above theoretical results. However, these em-

pirical studies have not reached a broad consensus. Some authors find a positive relationship

between government expenditure size and economic growth,1 whereas others find a negative

relationship.2 Interestingly, however, a fuzzy relationship is also reported in several studies.

For example, Cronovich (1998), Bairam (1990), and Fidrmuc (2003) find a lack of relationship

1Sattar (1993) and Bose et al. (2007), for example, find a positive relationship between the size of government
and the economic growth rate in developing countries. Using OECD data, Aschauer (1989), Evans and Karras
(1994), Kneller et al. (1999), Bleaney et al. (2001), and Colombier (2009) find the same results. Ram (1986)
and Easterly and Rebelo (1993) find a positive correlation using data from both developing and developed
countries.

2Landau (1983, 1986) and Devarajan et al. (1996) find a negative correlation between the size of government
expenditure and growth for developing countries. The same results are also found for OECD countries (Ahmed,
1986; Hsieh and Lai, 1994; Fölster and Henrekson, 2001; Afonso and Furceri, 2010; Afonso and Alegre, 2011),
and both developing and developed countries (Grier and Tullock, 1989; Landau, 1983, Barro, 1990, 1991). These
disparate results comport with the theoretical prediction of either a positive or negative relationship between
government size and growth.
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between the size of government expenditure and growth in developing countries. The same re-

sult is also found for developed countries (Saunders, 1995; Levine and Renelt, 1992; Andrès et

al.1997; Ghali, 1999) and for both developed and developing nations (Kormendi and Meguire,

1985; Scully, 1989; Lee and Lin, 1994; Lin, 1994).3

Thus, the theoretical challenge is to construct a model that can explain the positive, nega-

tive, and fuzzy relationships between government size and economic growth in a single setting.

This paper aims to present such an analytical framework to eliminate discrepancies between

theoretical and empirical studies.

We construct this analytical framework based on Romer’s (1990) endogenous growth model.

In this model, R&D activities that increase various intermediate goods drive long-term growth.

The final good is produced using a continuum of intermediate goods and productive government

spending financed contemporaneously by a flat-rate capital income tax. Our analysis also builds

on Jaimovich and Rebelo (2017) and Arawatari et al.’s (2018) approaches. We assume that

agents have heterogeneous R&D ability, with an endogenously determined cutoff level. Agents

whose abilities are below the cutoff disregard innovation and become workers.

Similar to Barro’s (1990) model, a change in government spending has two opposing effects

on economic growth in our model. First, high government expenditure increases monopolistic

profits and thus stimulates entry of intermediate-good firms, indicating a positive effect on

long-term growth rate. Second, high government spending indicates a high tax rate, depressing

the net benefit of R&D and indicating a negative effect on long-term growth rate. Therefore,

our model generates an inverted U-shaped relationship between government expenditure/GDP

ratio (government size) and economic growth, similar to Barro (1990). Moreover, the inverted

U-shaped relationship holds regardless of the presence or absence of heterogeneity in ability.

Then, how do heterogeneous abilities affect the relationship between government size and

economic growth? Figure 1 illustrates the answer to this question.4 The solid and dashed lines

illustrate the relationship between government expenditure/GDP ratio and economic growth

3Facchini and Melki (2013) provide a detailed literature review on empirical studies on the growth effect of
government expenditure.

4We will discuss this figure in Section 4.
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Figure 1: The relationship between government size and economic growth rate. The solid line
shows the graph of the heterogeneous-ability economy. The dashed line shows the graph of the
homogeneous-ability economy.

rate in the heterogeneous- and homogeneous-ability economies, respectively. Both graphs differ

numerically, though they show an inverted U-shaped relationship. This inverted U-shaped

curve has a flat top in the presence of heterogeneity. The flat top illustrates that a change in

government size has a limited impact on growth. This result suggests that heterogeneity may

be a source of a fuzzy relationship between government size and long-term economic growth.

We analytically derive the inverted U-shaped curve with a flat top (though Figure 1 shows our

calibration results). Thus, heterogeneity’s ability to generate a flat top or fuzzy relationship

can be easily explained.

If we assume that agents are homogeneous, then government expenditure’s positive or neg-

ative impact uniformly affects R&D incentives. As a result, government size and economic
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growth have a normal inverted U-shaped relationship. If agents have heterogeneous R&D abil-

ity, then government expenditure size non-uniformly affects their occupational choice. When

government expenditure/GDP ratio is sufficiently low or high, R&D’s net benefit is small, with

only high-ability agents becoming entrepreneurs. Thus, cutoff level changes affect high-ability

agents’ occupational choice. Given that this impact is relatively large, a change in government

size significantly impacts economic growth. In contrast, when government expenditure/GDP

ratio is moderate, a change government size generates occupational changes for low-ability

agents. Hence, the impact on economic growth is small. Therefore, an inverted U-shaped curve

with a flat top depicts the relationship between government size and economic growth rate in

the case of heterogeneous-ability agents. This flat top explains the positive, negative, and fuzzy

relationships between government expenditure/GDP ratio and economic growth rate.

We calibrate the model to U.S. data and empirically confirm our analysis. Assuming that

entrepreneurial ability follows a truncated Pareto distribution, our simulation performs an

inverted U-shaped relationship with a flat top between government expenditure/GDP ratio

and economic growth rate under plausible parameter values. A fuzzy relationship exists if

government expenditure/GDP ratio is approximately between 2% and 20%. However, long-

term growth rate significantly increases or decreases when government expenditure/GDP ratio

is outside this range. The U.S. average general government final consumption expenditure (%

of GDP) is approximately 15%. Thus, our numerical example suggests that the U.S. economy is

on the flat top of the inverted U-shaped curve (see Figure 1). Furthermore, a small government

size change is unimportant to the U.S. economy from the economic growth perspective.

Our theoretical and numerical results provide a new perspective of optimal government

size. Figure 1 shows that the correlation between government expenditure/GDP ratio and

economic growth rate in the heterogeneous-ability economy is not prominent when government

expenditure/GDP ratio is moderate. This finding implies that the debate about government

size is not significant to economic growth rate unless government size is extremely large or

small.
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2 Model

Time is continuous and is denoted by t ≥ 0. We consider a Romer’s (1990) endogenous growth

model in which growth is driven by R&D activities that expand the variety of intermediate

goods. Our model differs from Romer (1990) in two ways. First, we assume that government

spending is an input of final-good production, as in Barro (1990). Second, following Jaimovich

and Rebelo (2017), we assume that agents have heterogeneous entrepreneurial ability. Agents

choose whether to become a worker or an entrepreneur, as in Lucas (1978). If an agent becomes

an entrepreneur, then he/she engages in R&D activities to increase her intermediate-good firms.

2.1 Final-good production

The production technology of the final good is given by the following:

Yt =

(
Gt

Nt

)θ

· lαt ·
∫ Nt

0

z1−α
j,t dj, θ ∈ (0, 1), α ∈ (0, 1), (1)

where Yt is the final-good output, Gt is the productive government spending, Nt is the number

of intermediate goods, lt is labor input, and zi,t is the quantity of intermediate input j ∈ [0, Nt].

Following Barro’s (1990) model, total factor productivity depends on government expenditure

size, Gt. Since θ ∈ (0, 1), an increase in the number of intermediate goods, Nt, under constant

government spending, Gt, lowers TFP. We can interpret this relationship as a congestion effect.

In this model, a larger Nt is associated with a large economy size. Therefore, an increase in Nt

under constant Gt lowers TFP due to the congestion associated with the public goods. θ param-

eterizes the degree of congestion associated with productive government spending (Turnovsky,

1996).

Assume that the price of final good is normalized to unity. The final-good sector is com-

petitive, and final-good producers maximize after-tax profits as follows:

πf
t = (1− τt) ·

{(
Gt

Nt

)θ

· lαt ·
∫ Nt

0

z1−α
j,t dj −

∫ Nt

0

pj,tzj,tdj − wtlt

}
, (2)
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where τt is the capital income tax rate, pj,t is the price of the intermediate good j, and wt is

the wage rate expressed in terms of final-good units. The first-order conditions are as follows:

∂πf
t

∂zj,t
= 0 ⇔ pj,t = (1− α)

(
Gt

Nt

)θ (
lt
zj,t

)α

∀j, (3)

∂πf
t

∂lt
= 0 ⇔ wt = α

(
Gt

Nt

)θ ∫ Nt

0

(
lt
zj,t

)α−1

dj. (4)

Equation (3) implies that larger government expenditure shifts the inverse demand curve for

intermediate goods upwards. Given that the final-good sector is competitive, the value of πf
t

is zero in equilibrium.

2.2 Households

Consider a representative “large” household composed of heterogeneous agents. This assump-

tion avoids the complexity involved in managing asset holding distribution. A unit continuum of

identical households exists. Thus, the representative “large” household consists of L infinitely

lived agents with identical preferences. Following Jaimovich and Rebelo (2017), we assume

that agents in the representative household’s agents have heterogeneous entrepreneurial ability,

h ∈ [hmin, hmax]. This variable follows a cumulative distribution F (h) that is continuously

differentiable. The utility of the representative “large” household at time s is given as follows:

Us =

∫ ∞

s

(ct)
1−σ − 1

1− σ
· e−ρ(t−s)dt, (5)

where ct is the final-good consumption per agent at time t, ρ > 0 is the time preference rate,

and σ > 0 is the inverse of inter-temporal substitution.

Each agent in this representative household owns intermediate-good firms. Let nh,t denote

the number of intermediate-good firms that an agent with ability h owns. Then, the aggre-

gate number of intermediate-good firms is given by Nt =
∫ hmax

hmin
nh,tLdF (h). Assume that the

intermediate-good sector is monopolistically competitive.

In each period, each agent chooses whether to become a worker in the final-good sector and
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receive the labor income wt or become an entrepreneur and receive the monopolistic profits

earned by intermediate-good firms. If an agent with ability h becomes an entrepreneur and

engages in R&D activities, then he/she can invent δKthdt new intermediate goods at time

interval dt and obtain a permanent patent for each. The presence ofKt represents the knowledge

spillover (Grossman and Helpman, 1993). The law of motion for nh,t is given by ṅh,t = δKth ·

(1− Ih,t), where Ih,t = 0 holds if an agent with ability h becomes an entrepreneur and Ih,t = 1

holds if he/she becomes a worker. Then, the dynamics of the number of intermediate goods is

as follows:

Ṅt =

∫ hmax

hmin

ṅh,tLdF (h) = δKt ·
∫ hmax

hmin

h · (1− Ih,t)LdF (h). (6)

Each unit of the intermediate good is produced with η > 0 units of the final good as variable

costs and ξ > 0 units of the final good as fixed costs. From Equation (3), the after-tax profit

of the intermediate good j is as follows:

πj,t = (1− τt) ·

{
(1− α)

(
Gt

Nt

)θ

lαt z
1−α
j,t − ηzj,t − ξ

}
. (7)

Each agent receives a monopolistic profit πj,t from the intermediate-good firm that he/she

owns. The representative household as a whole receives
∫ Nt

0
πj,tdj. The household’s flow budget

constraint is as follows:

Lct + ḃt = rtbt +

∫ hmax

hmin

wtLIh,tdF (h) +

∫ Nt

0

πj,tdj, (8)

where bt denotes the real bond holdings of the representative household and rt is the real interest

rate. To simplify, we assume that agents with identical ability own the same initial stock of

intermediate-good firms and that all agents have zero initial bond holdings.

Given b0, nh,0, and N0, the representative household maximizes (5) subject to (6)-(8). Ap-
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pendix A demonstrates that the usual Euler equation holds as follows:

ċt
ct

=
1

σ
· (rt − ρ) ∀t ≥ 0. (9)

Appendix A also demonstrates that all intermediate-good firms produce the same quantity5 as

follows:

zj,t = Ψ

(
Gt

Nt

) θ
α

lt ≡ zt, Ψ ≡ (1− α)
2
α

η
1
α

. (10)

Therefore, all intermediate-good firms have the same value, given by the following:

νt =

∫ ∞

t

πse
−

∫ s
t rududs. (11)

Threshold ability h∗
t makes agents indifferent between being a worker and being an entrepreneur.

Agents with ability h < h∗
t become workers in the final-good sector, whereas others become

entrepreneurs and engage in R&D activities. Thus, threshold ability h∗
t satisfies the following:

wt = νtδKth
∗
t . (12)

The left- and right-hand sides of Equation (12) are the opportunity cost and benefit of being an

entrepreneur, respectively. Equations (7) and (11) imply that a change in the capital income

tax rate, τt, affects πt and νt and hence influences the agents’ occupational choice based on the

size of tax burden and government expenditure, Gt.

In equilibrium, the number of workers (the labor supply for final-good production) is given

by lt = {1− F (h∗
t )}L, and the number of entrepreneurs is given by F (h∗

t )L. Therefore, Equa-

tion (6) can be written as Ṅt = δKtL
∫ hmax

h∗
t

hdF (h). The following discussion assumes that

Kt = Nt (Grossman and Helpman, 1993). Then, the growth rate of Nt is given by the follow-

5Since all intermediate-good firms produce the same quantity, hereafter we omit the subscript i.

9



ing:

Ṅt

Nt

= δL

∫ hmax

h∗
t

hdF (h) ≡ ϕ(h∗
t ). (13)

High h∗
t indicates few entrepreneurs and less R&D activities. Thus, the growth rate is a

decreasing function of h∗
t .

2.3 Government

Government spending is financed contemporaneously by a flat-rate capital income tax. Given

that the final-good sector is competitive, πf
t = 0 in equilibrium. Hence, tax revenue is given by

τtNtπt/(1− τt)
6. The government’s flow budget constraint at time t is as follows:

Gt =
τt

1− τt
·Ntπt. (14)

We assume that the government controls the tax rate to maintain the ratio of government

spending to GDP constant over time. Let gt ≡ Gt/Yt denote the ratio of government spending

to GDP (hereafter referred to as government size), which is constant over time, that is, gt =

ḡ ∈ [0, 1] ∀t ≥ 0. Then, Equation (14) is written as follows:

ḡ =
τt

1− τt
· πt ·

Nt

Yt

. (15)

2.4 Equilibrium dynamics of h∗
t

The equilibrium conditions for the asset, final-good, and labor markets are respectively given

by the following:

bt = 0. (16)

Yt = Lct +Ntηzt +Ntξ +Gt. (17)

6Note that πt is the after-tax profit of an intermediate-good firm.
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L = F (h∗
t )L+ (1− F (h∗

t ))L = lt + (1− F (h∗
t ))L. (18)

We assume a closed economy. Thus, the net supply of real bonds is zero as in Equation (16).

Pertaining to the steady-state equilibrium, we make the following two assumptions:

Assumption 1. θ < min{α, σα}.

Assumption 2. ξ < Ψ
α(1−α)
α−θ ḡ

θ
α−θL

α
α−θ · {α(1− α)− ḡ}.

Assumption 1 holds if government spending elasticity with respect to output, θ, is sufficiently

small. Assumption 2 holds if intermediate-good production’s fixed cost is sufficiently small.

Assumptions 1 and 2 ensure the existence of a steady state with positive growth and τt ∈ [0, 1].

Then, Appendix B demonstrates that the tax rate that satisfies the government budget

constraint is given by the following:

τt =
ḡ

α(1− α)

(
1− ξ

Π(h∗
t ; ḡ)

) . (19)

Moreover, τt ∈ (0, 1] holds when h∗
t ∈ [h(ḡ), hmax]. Appendix B also gives the definitions of h(ḡ)

and Π(h∗
t ; ḡ). In what follows, we concentrate on the case of h∗

t ≥ h(ḡ) in which the government

budget is balanced. Appendix B also demonstrates that the equilibrium dynamics of threshold

ability h∗
t is given by the following:

sign
ḣ∗
t

h∗
t

= sign {h∗
t −RHS(h∗

t ; ḡ)} , (20)

where

RHS(h∗
t ; ḡ) ≡ ρ+ σϕ(h∗

t ){
α(1− α)

(
1− ξ

Π(h∗
t ; ḡ)

)
− ḡ

}
· LF (h∗

t )δ

α

. (21)
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2.5 Steady-state equilibrium

To ensure the existence of a steady state with a positive growth rate, we propose the following

assumption:

Assumption 3. α(1− α) ·
{
1− ξ

Π(hmax; ḡ∗)

}
− ḡ∗ >

αρ

Lδhmax

, ḡ∗ ≡ 1

Ψ1−αL
·
(

θξ

α− θ

)α−θ
α

.

Assumption 3 holds if the size of representative “large” household, L, is large and ensures

the existence of a steady state with a positive growth rate.

Define a steady-state equilibrium as an equilibrium where h∗
t is constant over time. Based

on Equation (20), the steady-state threshold ability, h∗s, is characterized by the following:

h∗s = RHS(h∗s; ḡ). (22)

Given that h∗s is a function of government size, we express it as h∗s(ḡ) in the following propo-

sition:

Proposition 1. Suppose Assumptions 1-3 hold. A unique steady-state equilibrium with positive

economic growth exists, and τt ∈ [0, 1] if and only if ḡ ∈ [ḡmin, ḡmax], where ḡmax and ḡmin satisfy

RHS(hmax; ḡmin) = RHS(hmax; ḡmax) = hmax.

For the proof, see Appendix C.

When government size is not extreme such that ḡ ∈ [ḡmin, ḡmax], the threshold ability h∗s(ḡ)

is smaller than hmax. Thus, certain agents become entrepreneurs and positive growth is possible.

3 Relationship between government size and economic

growth

The previous section indicates that a relationship exists between government size, ḡ, and the

growth rate, ϕ(h∗s(ḡ)). This section examines the effects of a change in government size on

steady-state growth rate. Note that as F (h) is continuously differentiable, h∗s(ḡ) and ϕ(h∗s(ḡ))
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are also continuously differentiable. Appendix D demonstrates the following:

dϕ(h∗s)

dḡ

=

δLh∗sF (h∗s) ·
{(

ḡ∗

ḡF (h∗s)

) α
α−θ − 1

}
F (h∗s)

h∗sF ′(h∗s)
·
[
α(1− α)

(
1− ξ

Π(h∗s;ḡ)

)
− ḡ

]
+

[
ασ + α(1− α) + ḡ ·

{(
ḡ∗

ḡF (h∗s)

) α
α−θ − 1

}] .
(23)

Assumption 2 ensures α(1 − α) − ḡ > 0. Thus, the denominator of the right-hand side of

Equation (23) is positive. Therefore, the sign of dϕ(h∗s)/dḡ is the same as the sign of the

numerator of the right-hand side of Equation (23). Thus, Lemma 1 can be proved.

Lemma 1. Suppose that Assumptions 1-3 hold. A unique ḡthres ∈ (ḡmin, ḡmax) exists such that

ḡ∗ = ḡthresF (h∗s(ḡthres)). Then we obtain the following:

dϕ(h∗s(ḡ))

dḡ
⋛ 0 ⇔ ḡ ⋚ ḡthres.

For the proof, see Appendix D.

Lemma 1 implies an inverted U-shaped relationship between government size and growth,

as in Barro’s (1990) model (see Figure 2). A change in the government size has two opposing

effects on economic growth. First, government expenditure shifts the inverse demand curve for

intermediate goods (see Equation (3)), thereby increasing the monopolistic profits earned by

intermediate goods and promoting R&D activities. This positive effect increases the long-term

growth rate. Second, larger government spending indicates higher tax rate, which depresses

the net benefit of R&D. This negative effect prevents R&D activities and decreases economic

growth rate. When government size, g, is initially small, the positive effect dominates the

negative effect because government spending’s marginal productivity is high, and vice versa.

13



Figure 2: Inverted U-shaped relationship between ḡ and ϕ(h∗s(ḡ)).

3.1 Homogeneous-ability economy

Equation (23) indicates that the magnitude of the relationship between government size and

economic growth rate depends on the distribution of ability, F (h). We consider a homogeneous-

ability economy in which all agents have the same ability ĥ > 0 to highlight the role of hetero-

geneity in entrepreneurial ability.

Hereafter, the variables with superscript H denote those variables for the homogeneous-

ability economy. Denote the fraction of workers in the homogeneous-ability economy by qt ∈

[0, 1]. Then, the growth rate in the homogeneous-ability economy is given by ϕH = δĥL(1−qt).

Denote the steady-state fraction of workers by q∗. Then, Appendix E demonstrates that

the tax rate that satisfies the government budget constraint is given by the following:

τHt =
ḡ

α(1− α)

(
1− ξ

ΠH(qt; ḡ)

) .

Furthermore, τHt ∈ (0, 1] holds when qt ∈ [q(ḡ), 1]. Appendix E also gives the definition of q(ḡ).

In what follows, we concentrate on the case of qt ≥ q(ḡ) in which the government budget is

balanced. Appendix E also shows that the equilibrium fraction of workers in the homogeneous-

14



ability economy, q∗, is characterized by the following:

ĥ = RHSH(q∗; ḡ), (24)

where

RHSH(qt; ḡ) ≡ ρ+ σϕH(qt){
α(1− α)

(
1− ξ

ΠH(qt; ḡ)

)
− ḡ

}
· Lqtδ

α

. (25)

Pertaining to the steady state, we propose the following assumption:

Assumption 4. α(1− α) ·
{
1− ξ

ΠH(1; ḡ∗)

}
− ḡ∗ >

αρ

Lδĥ
.

The definition of ḡ∗ is given in Assumption 3, which corresponds to Assumption 4 in the

heterogeneous-ability economy. Assumption 4 holds if L is large enough and it ensures the

existence of a steady state with positive growth.

Given Assumptions 1, 2, and 4, Proposition 2 below can be proved.

Proposition 2. Suppose that Assumptions 1, 2, and 4 hold. A unique steady-state equilibrium

with positive economic growth exists, and τH ∈ [0, 1] if and only if ḡ ∈ [ḡHmin, ḡ
H
max], where ḡHmin

and ḡHmax satisfy RHSH(1; ḡHmin) = RHSH(1; ḡHmax) = ĥ.

For the proof, see Appendix F.

This proposition corresponds to Proposition 1 in the heterogeneous-ability economy. Then,

Appendix G demonstrates the following:

dϕH(q∗)

dḡ
=

δLĥq∗ ·
{(

ḡ∗

ḡq∗

) α
α−θ − 1

}
ασ + α(1− α) + ḡ ·

{(
ḡ∗

ḡq∗

) α
α−θ − 1

} . (26)

Assumption 2 ensures a positive denominator of the right-hand side of Equation (26). Therefore,

the sign of dϕH(q∗)/dḡ is the same as that of the numerator of the right-hand side of Equation

(26). Then, Lemma 2 can be proved as follows:
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Lemma 2. Suppose that Assumptions 1, 2, and 4 hold. ḡthres,H ∈ (ḡHmin, ḡ
H
max) such that

ḡ∗ = ḡthres,Hq∗(ḡthres,H). Then we have the following:

dϕH(q∗(ḡ))

dḡ
⋛ 0 ⇔ ḡ ⋚ ḡthres,H .

For the proof, see Appendix G.

3.2 Comparing the heterogeneous- and homogeneous-ability economies

We now compare the heterogeneous- and homogeneous-ability economies to highlight the role

of heterogeneity. A comparison of Equations (23) and (26) indicates three differences between

these economies: (i) the terms F (h∗s) and q∗ of the two equations, (ii) the terms h∗s and

ĥ in the numerator of the two equations, and (iii) the first term in the denominator on the

right-hand side of Equation (23). The first difference is not fundamental. Both F (h∗s) and q∗

are the steady-state values of the fraction of workers. The second difference shows that in the

heterogeneous-ability economy, the impact of government expenditure tends to increase with

threshold ability h∗s. Government expenditure affects economic growth through its impact on

agents’ occupational choices with the threshold ability. The second difference also suggests

that high-ability agents’ occupational choices have larger impacts on growth than those of low-

ability agents. The third difference is the most important. Using Equation (19), we rewrite the

first term in the denominator of Equation (23) as follows:

F (h∗s)

h∗sF ′(h∗s)
·
[
α(1− α)

(
1− ξ

Π(h∗s; ḡ)

)
− ḡ

]
=

F (h∗s)

h∗sF ′(h∗s)
· (1− τ)ḡ

τ
. (27)

Therefore, when τ ∈ [0, 1], this term is positive. Equation (27) implies that the shape of the

distribution function of ability determines the impact of government expenditure on economic

growth in the heterogeneous-ability economy. Note that F ′(h∗s) is the density of agents with

threshold ability. Therefore, the third difference suggests that when the aggregate size of

threshold ability, h∗sF ′(h∗s), is large, government expenditure tends to have a large effect on

economic growth.
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Figure 3: The relationship between government size and economic growth rate.

These differences between the homogeneous- and heterogeneous-ability economies produce a

different relationship between productive government expenditure and economic growth. Hence,

the following proposition is obtained:

Proposition 3. Suppose that hmax > ĥ and ĥ is sufficiently large. Then, we obtain the follow-

ing:

(i) ḡmin < ḡHmin < ḡHmax < ḡmax.

(ii) maxḡ ϕ
H(q∗(ḡ)) > maxḡ ϕ(h

∗s(ḡ)).

For the proof, see Appendix H.

The condition that hmax is sufficiently large implies a long-tailed distribution of ability.

Therefore, Proposition 3 shows that when ability has a wide distribution, the graph of ϕ(h∗s(ḡ))

is wider (Proposition 3(i)) and lower (Proposition 3(ii)) than the graph of ϕH(q∗(ḡ)) (see Figure

3).

The following proposition also holds.
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Proposition 4. Suppose that limhmax→+∞ hmaxF
′(hmax) ̸= 0 and hmax is sufficiently large.

Then, we have the following:

dϕ(h∗s(ḡ))

dḡ

∣∣∣
ḡ=ḡmax

<
dϕH(q∗(ḡ))

dḡ
≤ 0 ∀ḡ ∈ [ḡthres,H , ḡHmax].

dϕ(h∗s(ḡ))

dḡ

∣∣∣
ḡ=ḡmin

>
dϕH(q∗(ḡ))

dḡ
≥ 0 ∀ḡ ∈ [ḡHmin, ḡ

thres,H ].

For the proof, see Appendix I.

Proposition 4 suggests that the impact of government expenditure on economic growth

in the heterogeneous-ability economy is larger than that in the homogeneous-ability economy

when government expenditure size is sufficiently small or large (see Figure 3).

The condition that hmax is sufficiently large indicates a long-tailed distribution of ability.

The condition limhmax→+∞ hmaxF
′(hmax) ̸= 0 means that the number of high-ability agents is

non-negligible. This relationship implies a fat-tailed distribution of ability. A combination the

above two conditions leads to a long- and fat-tailed distribution of ability.

Propositions 3 and 4 imply that the heterogeneity of entrepreneurial ability plays a key role

in the effect of government expenditure on economic growth. In the presence of agents’ hetero-

geneous R&D ability, the linkage between eonomic growth rate and government size is depicted

by an inverted U-shaped curve that has a flat top for various government spending/GDP ratios.

On the one hand, when government expenditure size is sufficiently small or large, it tends to

have a large effect on growth (Proposition 4). On the other hand, when it is moderate, the

impact of government expenditure size on growth is small (Proposition 3).

The intuition of Propositions 3 and 4 is as follows. Note that when government expenditure

is small, the demand for intermediate goods is low (see Equation (3)). Furthermore, when

government expenditure is large, the tax rate is high. Therefore, sufficiently small or large

government expenditure size leads to a small net profit of an intermediate-good firm. Thus, only

high-ability agents become entrepreneurs. Entrepreneurial ability follows a long- and fat-tailed

distribution. Hence, high-ability agents’ occupational choices significantly impact economic

18



growth. This condition results in a strong relationship between government expenditure size

and economic growth.

By contrast, when government expenditure is moderate, threshold ability h∗
t is sufficiently

low. Note that under the long- and fat-tailed distribution of ability, low-ability agents’ size is

not sufficiently large. Therefore, low-ability agents’ occupational choices have less impact on

economic growth.

4 Quantitative analysis

Section 3 demonstrats that when the entrepreneurial ability follows long- and fat-tailed distri-

bution, the relationship between the size of government and the growth rate is depicted by

an inverted U-shaped curve with a flat top. This section shows that the flat inverted U-shaped

relationship is obtained under plausible parameter values.

4.1 Distribution function

We assume that the entrepreneurial ability follows a truncated Pareto distribution as follows:

F (h) =
1− (hmin/h)

a

1− (hmin/hmax)a
. (28)

where a ≥ 1 is a shape parameter and hmin and hmax (hmax > hmin) are the lower and upper

bounds of ability, respectively. The truncated Pareto distribution is a typical example of a fat-

tailed distribution. Therefore, when hmax is sufficiently large, the above distribution function

implies a long- and fat-tailed distribution of ability. Thus, the condition in Proposition 4,

limhmax→+∞ hmaxF
′(hmax) ̸= 0, is satisfied.

4.2 Calibration strategy

We now calibrate the model to perform the effects of changes in government size on the growth

rate of homogeneous- and heterogeneous-ability economies. Our calibration strategy is based
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on Jaimovich and Rebelo (2013) and Arawatari et al. (2018).

Heterogeneous-ability economy

First, consider the heterogeneous-ability economy whose model features structural parameters

{α, θ, η, ξ, σ, ρ, L, hmin, hmax, a, δ} and the policy instrument ḡ ∈ [0, 1]. We set the labor share

in the final-good production to 60% (α = 0.6). We assume that σ = 2 and ρ = 0.01, which

are conventional values. The size of the representative “large” household is normalized to 1

(L = 1). We normalize the marginal cost of intermediate-good production to unity, (η = 1),

and its fixed cost is not extremely large (ξ = 0.0001). Without loss of generality, we set the

lower bound of ability to 1, hmin = 1. Finally, we assume that θ = 0.3.

Three conditions are needed to pin down the values of the remaining three parameters: the

upper bound of ability (hmax), the shape parameter of the truncated Pareto distribution (a),

and the strength of knowledge spillover, δ. We calibrate the values of these parameters based

on the following three empirical facts of the U.S. economy:

1. Average annual GDP per capita growth rate is about 2%, and the ratio of the average

general government final consumption expenditure (% of GDP) is approximately 15%.

2. According to the U.S. Census Bureau’s “2017 SUSB Annual Data Tables by Establishment

Industry,” the largest 1,100 U.S. firms with more than 10,000 employees employ 37,739,206

workers in 2017.7 The U.S. had 5,996,900 firms and 128,591,812 workers, indicating that

the top 0.018% of U.S. firms contributed 29.348% of total employment in 2017.

3. Similarly, the top 0.336% of U.S. firms contributed 52.908% of total employment in 2017.

Before calibrating {hmax, a, δ}, consider the relationship between the size of intermediate-

good firms and entrepreneurs’ ability. Following Jaimovich and Rebelo (2013), we assume

that the intermediate-good and the final-good sectors are vertically integrated. Thus, that

intermediate-good firms hire workers to produce the final good. Now, let sh,t ≡ nh,t/Nt, denote

7Source: https://www.census.gov/data/tables/2017/econ/susb/2017-susb-annual.html. (Accessed on April
14, 2020)
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the share of intermediate-good firms owned by an agent with ability h, and assume the following:

sh,0 =
nh,0

N0

=
h

L
∫ hmax

h∗ hdF (h)
. (29)

This assumption implies that intermediate-good firms’ initial ownership is distributed among

entrepreneurs in proportion to their ability. Under this assumption, we obtain ṅh,t/nh,t =

ϕ (h∗s(ḡ)) ∀h ∈ [h∗,s, hmax]. Hence, the share of intermediate-good firms owned by agents,

sh,t, remains constant over time.8 Then, recall that intermediate-good firms are symmetric

and produce the same quantity. Thus, the number of intermediate goods owned by an agent

is proportional to the number of workers he/she employs. Therefore, the total employment is

proportional to the entrepreneur’s ability.

We calibrate {hmax, a, δ} as follows. Total employment is proportional to the entrepreneur’s

ability. Thus, the abovementioned three empirical facts of the U.S. economy are written as

follows:

1. ϕ
(
h∗s(ḡ = 0.15)

)
= δLH

(
h∗s(ḡ = 0.15)

)
= 0.02.

2.

∫ hmax

h1
hdF (h)∫ hmax

h∗s hdF (h)
= 0.29348, where h1 satisfies

∫ hmax

h1
dF (h)∫ hmax

h∗s dF (h)
= 0.00018.

3.

∫ hmax

h2
hdF (h)∫ hmax

h∗s hdF (h)
= 0.52908, where h2 satisfies

∫ hmax

h2
dF (h)∫ hmax

h∗s dF (h)
= 0.00336.

Using an iterative process, we compute {hmax, a, δ} to satisfy the above equations. Then,

we obtain a = 1, δ = 0.0016, and hmax = 46, 141, 337.9 The calibrated value of hmax seems

sufficiently large. Hence, ability has a long-tailed distribution.

8From (13) and (29), we obtain

ṅh,0

nh,0
=

δh

sh,0
= δL

∫ hmax

h∗s
hdF (h) = ϕ (h∗s(ḡ)) ∀h ∈ [h∗s, hmax] .

This implies that nh,t grows at the same rate as Nt, and the share of patents, sh,t, remains constant over time.
9Under these parameters and ḡ = 0.15, our model indicates that the top 0.018% of firms employ 29.3% of

workers, and the top 0.336% of firms employ 53.2% of workers, which fit well with the U.S. data.
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Homogeneous-ability economy

Next, we consider the homogeneous-ability economy whose model features structural param-

eters {α, θ, η, ξ, σ, ρ, L, δ, ĥ} and policy instrument ḡ ∈ [0, 1]. We use the same parame-

ter values as those in the heterogeneous-ability economy, except for ĥ. Given these param-

eters, we choose ĥ. Thus, the steady-state growth rate under ḡ = 0.15 is 2%, that is,

ϕH
(
q∗(ḡ = 0.15)

)
= δĥL

(
1 − q∗(ḡ = 0.15)

)
= 0.02. This condition yields ĥ = 236, satis-

fying Proposition 3, hmax > ĥ.

4.3 Results

Figure 1 shows the effect of changes in government size, ḡ, on the growth rate of both heterogeneous-

and homogeneous-ability economies. Both economies have an inverted U-shaped relationship

between government size and economic growth rate, similar to Barro (1990). However, the mag-

nitude of these relationships significantly differs when government size is not extremely large

or small. In the homogeneous-ability economy, government size strongly impacts growth. As

government expenditure/GDP ratio increases from 5% to 20%, economic growth rate decreases

from 4.14% to 0.59%.

On the contrary, the effect on growth in the heterogeneous-ability economy is significantly

weak. We find an inverted U-shaped relationship with a flat top between government size and

economic growth. Thus, as government expenditure/GDP ratio increases from 5% to 20%,

economic growth rate decreases from 2.12% to 1.88%. This reduction is much smaller than

that implied by the model of the homogeneous-ability economy model.

This result agrees with Propositions 3 and 4. Heterogeneity in ability generates the inverted

U-shaped relationship with a flat top between government size and economic growth. This result

suggests a new insight into the magnitude of the effect of government size on growth, though

this relationship is consistent with Barro’s (1990) findings.
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4.4 Implications

Barro (1990) shows in his seminal paper that economic growth (and welfare) maximizing level

of the government expenditure/GPD ratio is equal to labor share using a simple AK-style

endogenous growth model with productive government expenditure. This result implies an

optimal government expenditure/GPD of approximately 0.7, and most countries’ government

size is below the optimal level. Subsequent theoretical studies have modified Barro’s (1990)

model in several ways and found that the optimal government expenditure/GPD ratio is much

lower than that induced by Barro (1990). Based on these theoretical results, several empirical

studies have estimated the optimal government size in each country. The debate about the

optimal government size has been one of the big issues in economics.

The present study provides a new perspective on the optimal size of government. Figure 1

shows that the correlation between government expenditure/GDP ratio and economic growth

rate in the heterogeneous-ability economy is not prominent when the government expendi-

ture/GDP ratio is moderate. This finding implies that the debate about government size is

unimportant to economic growth rate unless government size is extremely large or small. For

example, our numerical results in Figure 1 suggests that the U.S. economy is on the flat top

of the inverted U-shaped curve, and a slight change in government size is unimportant to the

U.S. economy from the economic growth perspective.

5 Conclusion

This study presents an analytical framework that can explain the positive, negative, and fuzzy

relationships between government size and economic growth in a single setting. Using an

R&D-based endogenous growth model, we show that a long- and fat-tailed distribution of en-

trepreneurial ability plays a key role in generating an inverted U-shaped relationship with a flat

top between government expenditure/GDP ratio and economic growth rate. We also calibrate

the model to U.S. data and show an inverted U-shaped relationship with a flat top between

government expenditure/GDP ratio and economic growth rate under plausible parameter val-
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ues. Our theoretical and numerical results suggest that the debate about government size is

unimportant to economic growth rate unless government size is extremely large or small.
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Appendix

A Utility maximization of households

The first-order conditions of the utility maximization of representative household are given by

ct : c−σ
t = λtL, (A.1)

zj,t : (1− α)2
(
Gt

Nt

)θ

lαt z
−α
j,t = η, (A.2)

bt : λ̇t = (ρ− rt)λt, (A.3)

Nt : λt · (1− τt) ·

{
(1− α)

(
Gt

Nt

)θ

lαt z
1−α
Nt,t

− ηzNt,t − ξ

}
= −ζ̇t + ρζt, (A.4)

Ih,t : Ih,t =

 1 if λtwt > ζtδKth

0 if λtwt ≤ ζtδKth
(A.5)

where λt and ζt are the co-state variables associated with the budget constraint and the law of

motion for Nt, respectively.

From (A.2), we know that all intermediate-good firms produce the same quantity, as shown

in equation (10). Since all intermediate-good firms are symmetric, we can eliminate the sub-

script j from zj,t in what follows. Substituting (10) into (A.4), we obtain

λt (1− τt) ·

{
(1− α)

(
Gt

Nt

)θ

lαt z
1−α
t − ηzt − ξ

}
︸ ︷︷ ︸

πt

= −ζ̇t + ρζt. (A.6)

Let us define νt ≡ ζt/λt. Substituting (A.3) into the above equation, we obtain rtνt = ν̇t + πt,

which has the following solution:

νt =

∫ ∞

t

πse
−

∫ s
t rududs. (A.7)

Therefore, νt represents the value of an intermediate-good firm.

In equilibrium, the threshold ability h∗
t makes agents indifferent between being a worker
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and being an entrepreneur. Thus, from equation (A.5), h∗
t satisfies wt = νtδKth

∗
t . From (A.2),

all intermediate-good firms produce the same quantity:

zj,t = Ψ

(
Gt

Nt

) θ
α

lt ≡ zt, Ψ ≡ (1− α)
2
α

η
1
α

.

■

B Equilibrium dynamics

B.1 The Euler equation

Inserting (10) and (18) into (1) yields

Yt =

(
Gt

Nt

)θ

lαt Ntz
1−α
t

=

(
Gt

Nt

)θ

lαt NtΨ
1−α

(
Gt

Nt

) θ(1−α)
α

l1−α
t

= NtΨ
1−α

(
Gt

Nt

) θ
α

LF (h∗
t ). (B.1)

Using (B.1), we rewrite into the equilibrium condition for the final-good market, (17), as

NtΨ
1−α

(
Gt

Nt

) θ
α

LF (h∗
t ) = Lct +NtηΨ

(
Gt

Nt

) θ
α

LF (h∗
t ) +Ntξ +Gt. (B.2)

We define ĉt ≡ ct/Nt. Differentiating this equation with respect to time and inserting (9)

and (13) into it yields

˙̂ct
ĉt

=
1

σ
· (rt − ρ)− ϕ(h∗

t ). (B.3)

Dividing both sides of (B.2) by Nt, we obtain

ĉt =

(
Gt

Nt

) θ
α

F (h∗
t ) ·

(
Ψ1−α − ηΨ

)
− ξ

L
− 1

L
· Gt

Nt

. (B.4)
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Inserting the definition of ḡ, Gt = ḡYt, into (B.1) yields

Yt = (ḡYt)
θ
αN

α−θ
α

t Ψ1−αLF (h∗
t )

⇔ Y
α−θ
α

t = ḡ
θ
αN

α−θ
α

t Ψ1−αLF (h∗
t )

⇔ Yt

Nt

= ḡ
θ

α−θΨ
α(1−α)
α−θ {LF (h∗

t )}
α

α−θ . (B.5)

Note that Assumption 1 ensures that the final-good production is an increasing function of the

size of government, ḡ, and the labor input, LF (h∗
t ).

Using (B.5), we obtain

Gt

Nt

=
ḡYt

Nt

= ḡ
α

α−θΨ
α(1−α)
α−θ L

α
α−θF (h∗

t )
α

α−θ . (B.6)

Inserting (B.6) into (B.4), we rewrite the equilibrium condition for the final-good market as

ĉt = (Ψ1−α − ηΨ)F (h∗
t )ḡ

θ
α−θΨ

θ(1−α)
α−θ L

θ
α−θF (h∗

t )
θ

α−θ

− ξ

L
− 1

L
· ḡ

α
α−θΨ

α(1−α)
α−θ L

α
α−θF (h∗

t )
α

α−θ

=
[
(Ψ1−α − ηΨ)ḡ

θ
α−θΨ

θ(1−α)
α−θ − ḡ

α
α−θΨ

α(1−α)
α−θ

]
L

θ
α−θF (h∗

t )
α

α−θ − ξ

L

= Ψ
α(1−α)
α−θ

[
(Ψ1−α − ηΨ)ḡ

θ
α−θΨ

θ(1−α)−α(1−α)
α−θ − ḡ

α
α−θ

]
L

θ
α−θF (h∗

t )
α

α−θ − ξ

L

= Ψ
α(1−α)
α−θ

[
(Ψ1−α − ηΨ)ḡ

θ
α−θΨ−(1−α) − ḡ

α
α−θ

]
L

θ
α−θF (h∗

t )
α

α−θ − ξ

L

= Ψ
α(1−α)
α−θ

[
(1− ηΨα)ḡ

θ
α−θ − ḡ

α
α−θ

]
L

θ
α−θF (h∗

t )
α

α−θ − ξ

L

= Ψ
α(1−α)
α−θ ḡ

θ
α−θ [α(2− α)− ḡ]L

θ
α−θF (h∗

t )
α

α−θ − ξ

L
. (B.7)

Differentiating (B.7) with respect to time yields

˙̂ct = Ψ
α(1−α)
α−θ ḡ

θ
α−θ [α(2− α)− ḡ]L

θ
α−θ · α

α− θ
· F (h∗

t )
θ

α−θF ′(h∗
t )h

∗
t ·

ḣ∗
t

h∗
t

=
αΨ

α(1−α)
α−θ L

θ
α−θF (h∗

t )
α

α−θ ḡ
θ

α−θ

α− θ
· {α(2− α)− ḡ} · F

′(h∗
t )h

∗
t

F (h∗
t )

· ḣ
∗
t

h∗
t

. (B.8)
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Inserting (B.8) into (B.3), we rewrite the Euler equation as

1

σ
· (rt − ρ)− ϕ(h∗

t )

=
1

ĉt
· αΨ

α(1−α)
α−θ L

θ
α−θF (h∗

t )
α

α−θ ḡ
θ

α−θ

α− θ
· {α(2− α)− ḡ} · F

′(h∗
t )h

∗
t

F (h∗
t )

· ḣ
∗
t

h∗
t

. (B.9)

B.2 Occupational choice

Inserting (10) and (B.6) into (12), we obtain

wt = α

(
Gt

Nt

)θ

Ntl
α−1
t Ψ1−α

(
Gt

Nt

) θ(1−α)
α

l1−α
t

= α

(
Gt

Nt

) θ
α

NtΨ
1−α

= αḡ
θ

α−θΨ
θ(1−α)
α−θ L

θ
α−θF (h∗

t )
θ

α−θNtΨ
1−α

= αΨ
α(1−α)
α−θ ḡ

θ
α−θL

θ
α−θF (h∗

t )
θ

α−θNt. (B.10)

Recall that we assumed Kt = Nt. Using (B.10), we can rewrite equation (12) as

αΨ
α(1−α)
α−θ ḡ

θ
α−θL

θ
α−θF (h∗

t )
θ

α−θ = νtδh
∗
t . (B.11)

Taking logarithms and differentiating both sides of (B.11) yields

θ

α− θ
· F

′(h∗
t )h

∗
t

F (h∗
t )

· ḣ
∗
t

h∗
t

=
ν̇t
νt

+
ḣ∗
t

h∗
t

. (B.12)

Using the definition of νt, (A.3) and (A.6), we obtain

ν̇t
νt

=
ζ̇t
ζt

− λ̇t

λt

= ρ− λt

ζt
· πt − (ρ− rt)

= rt −
πt

νt
. (B.13)
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Inserting (10) and (B.6) into (7) yields

πt = (1− τ)

[
(1− α)

(
Gt

Nt

)θ

lαt z
1−α
t − ηzt − ξ

]

= (1− τ)

[
(1− α)

(
Gt

Nt

)θ

lαt Ψ
1−α

(
Gt

Nt

) θ(1−α)
α

l1−α
t − ηΨ

(
Gt

Nt

) θ
α

lt − ξ

]

= (1− τ)

[
(1− α)Ψ1−α

(
Gt

Nt

) θ
α

lt − ηΨ

(
Gt

Nt

) θ
α

lt − ξ

]

= (1− τ)

[
Ψ1−α {(1− α)− ηΨα}

(
Gt

Nt

) θ
α

LF (h∗
t )− ξ

]
= (1− τ)

[
Ψ1−α {(1− α)− ηΨα} ḡ

θ
α−θΨ

θ(1−α)
α−θ L

θ
α−θF (h∗

t )
θ

α−θLF (h∗
t )− ξ

]
= (1− τ)

[
Ψ

α(1−α)
α−θ α(1− α)ḡ

θ
α−θL

α
α−θF (h∗

t )
α

α−θ − ξ
]

= (1− τt) [Π(h
∗
t ; ḡ)− ξ] . (B.14)

where

Π(h∗
t ; ḡ) ≡ Ψ

α(1−α)
α−θ α(1− α)ḡ

θ
α−θL

α
α−θF (h∗

t )
α

α−θ . (B.15)

From (B.13) and (B.14), we obtain

ν̇t
νt

= rt −
(1− τt) · {Π(h∗

t ; ḡ)− ξ}
νt

. (B.16)

Then, (B.11) implies

1

νt
=

δh∗
t

αΨ
α(1−α)
α−θ ḡ

θ
α−θL

θ
α−θF (h∗

t )
θ

α−θ

=
δh∗

t

Π(h∗
t ; ḡ)

(1− α)LF (h∗
t )

=
(1− α)LF (h∗

t )δh
∗
t

Π(h∗
t ; ḡ)

. (B.17)

Inserting (B.17) into (B.16), we have

ν̇t
νt

= rt −
(1− τt)(1− α)LF (h∗

t )δh
∗
t {Π(h∗

t ; ḡ)− ξ}
Π(h∗

t ; ḡ)
. (B.18)
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Inserting (B.18) into (B.12) yields

{
1− θ

α− θ
· F

′(h∗
t )h

∗
t

F (h∗
t )

}
· ḣ

∗
t

h∗
t

= −rt +
(1− τt)(1− α)LF (h∗

t )δh
∗
t {Π(h∗

t ; ḡ)− ξ}
Π(h∗

t ; ḡ)
. (B.19)

B.3 Government budget constraint

Using (B.5) and (B.14), we can rewrite the government budget constraint in (15) as

τt =
ḡ

α
α−θΨ

α(1−α)
α−θ L

α
α−θF (h∗

t )
α

α−θ

Π(h∗
t ; ḡ)− ξ

=
ḡ

α(1− α)

(
1− ξ

Π(h∗
t ; ḡ)

) . (B.20)

Note that Assumption 2 implies

ḡ

α(1− α)

(
1− ξ

Π(hmax; ḡ)

) < 1 and 1− ξ

Π(hmax; ḡ)
> 0, (B.21)

Since Π(h∗
t ; ḡ) is an increasing function of h∗

t , and Π(hmin; ḡ) = 0, Assumption 2 ensures the

existence of a h(ḡ) ∈ (hmin, hmax), which satisfies the following condition:

ḡ

α(1− α)

(
1− ξ

Π(h(ḡ); ḡ)

) = 1. (B.22)

When h∗
t ∈ [h(ḡ), hmax], τt ∈ (0, 1] is satisfied. In what follows, we concentrate on the case of

h∗
t ≥ h(ḡ) in which the government budget is balanced.

B.4 Equilibrium dynamics

Equilibrium dynamics is characterized by (B.9), (B.19), and (B.20). Eliminating rt from (B.9)

and (B.19), we have

[
σ

ĉt
· Π(h∗

t ; ḡ)

(α− θ)(1− α)L
· {α(2− α)− ḡ} · F

′(h∗
t )h

∗
t

F (h∗
t )

+ 1− θ

α− θ
· F

′(h∗
t )h

∗
t

F (h∗
t )

]
· ḣ

∗
t

h∗
t

=
(1− τt)(1− α)LF (h∗

t )δh
∗
t {Π(h∗

t ; ḡ)− ξ}
Π(h∗

t ; ḡ)
− {ρ+ σϕ(h∗

t )}. (B.23)
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Using the definition of Π(h∗
t ; ḡ), we can rewrite equation (B.7) as

ĉt =
Π(h∗

t ; ḡ) {α(2− α)− ḡ} − α(1− α)ξ

α(1− α)L
.

Inserting (B.24) into the left-hand side of (B.23), we have

[
σα(1− α)L

Π(h∗
t ; ḡ) {α(2− α)− ḡ} − α(1− α)ξ

· Π(h∗
t ; ḡ)

(α− θ)(1− α)L
· {α(2− α)− ḡ} · F

′(h∗
t )h

∗
t

F (h∗
t )

+1− θ

α− θ
· F

′(h∗
t )h

∗
t

F (h∗
t )

]
· ḣ

∗
t

h∗
t

=

{
1 +

1

α− θ
· F

′(h∗
t )h

∗
t

F (h∗
t )

·
[

σαΠ(h∗
t ; ḡ) · {α(2− α)− ḡ}

Π(h∗
t ; ḡ) {α(2− α)− ḡ} − α(1− α)ξ

− θ

]}
· ḣ

∗
t

h∗
t

=

{
1 +

1

α− θ
· F

′(h∗
t )h

∗
t

F (h∗
t )

·
[
(σα− θ)Π(h∗

t ; ḡ) · {α(2− α)− ḡ}+ αθ(1− α)ξ

Π(h∗
t ; ḡ) {α(2− α)− ḡ} − α(1− α)ξ

]}
· ḣ

∗
t

h∗
t

= Γ(h∗
t ; ḡ) ·

ḣ∗
t

h∗
t

. (B.24)

where

Γ(h∗
t ; ḡ) ≡ 1 +

1

α− θ
· F

′(h∗
t )h

∗
t

F (h∗
t )

·
[
(σα− θ)Π(h∗

t ; ḡ) · {α(2− α)− ḡ}+ αθ(1− α)ξ

Π(h∗
t ; ḡ) {α(2− α)− ḡ} − α(1− α)ξ

]
. (B.25)

Finally, inserting (B.24) into (B.23), we obtain

Γ(h∗
t ; ḡ) ·

ḣ∗
t

h∗
t

=
(1− τt)(1− α)LF (h∗

t )δh
∗
t {Π(h∗

t ; ḡ)− ξ}
Π(h∗

t ; ḡ)
− {ρ+ σϕ(h∗

t )}

=
(1− τt)(1− α)LF (h∗

t )δ {Π(h∗
t ; ḡ)− ξ}

Π(h∗
t ; ḡ)

·
[
h∗
t −

Π(h∗
t ; ḡ){ρ+ σϕ(h∗

t )}
(1− τt)(1− α)LF (h∗

t )δ {Π(h∗
t ; ḡ)− ξ}

]
=

(1− τt)(1− α)LF (h∗
t )δ {Π(h∗

t ; ḡ)− ξ}
Π(h∗

t ; ḡ)

×

h∗
t −

ρ+ σϕ(h∗
t )

α(1−α)

(
1− ξ

Π(h∗t ;ḡ)

)
−ḡ

α(1−α)

(
1− ξ

Π(h∗t ;ḡ)

) · (1− α)LF (h∗
t )δ

(
1− ξ

Π(h∗
t ; ḡ)

)
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=
(1− τt)(1− α)LF (h∗

t )δ {Π(h∗
t ; ḡ)− ξ}

Π(h∗
t ; ḡ)

·

h∗
t −

ρ+ σϕ(h∗
t ){

α(1− α)

(
1− ξ

Π(h∗
t ; ḡ)

)
− ḡ

}
· LF (h∗

t )δ

α


=

(1− τt)(1− α)LF (h∗
t )δ {Π(h∗

t ; ḡ)− ξ}
Π(h∗

t ; ḡ)
· [h∗

t −RHS(h∗
t ; ḡ)] , (B.26)

where

RHS(h∗
t ; ḡ) ≡ ρ+ σϕ(h∗

t ){
α(1− α)

(
1− ξ

Π(h∗
t ; ḡ)

)
− ḡ

}
· LF (h∗

t )δ

α

. (B.27)

Finally, we show that the steady-state threshold, h∗s, is characterized by h∗s = RHS(hasts; ḡ).

Recall that we concentrate on the case in which the government budget is balanced, i.e.,

h∗
t ≥ h(ḡ) (see equation (B.22)). Then, the definition of h(ḡ) implies

Π(h(ḡ); ḡ) {α(2− α)− ḡ} − α(1− α)ξ

= αΠ(h(ḡ); ḡ) + α(1− α) · {Π(h(ḡ); ḡ)− ξ} − Π(h(ḡ); ḡ)ḡ

= αΠ(h(ḡ); ḡ)

> 0.

Therefore,

Π(h∗
t ; ḡ) {α(2− α)− ḡ} − α(1− α)ξ > 0,

holds for any h∗
t ≥ h(ḡ). Under Assumption 1, this implies Γ(h∗

t ; ḡ) > 0. Moreover, (B.22)

implies Π(h(ḡ); ḡ) > ξ. Since Π(h∗
t ; ḡ) is an increasing function of h∗

t , Π(h
∗
t ; ḡ) > ξ ∀h∗

t ∈

[h(ḡ), hmax] holds. Therefore, under Assumptions 1 and 2, we have

sign
ḣ∗
t

h∗
t

= sign {h∗
t −RHS(h∗

t ; ḡ)} .
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Figure C.1: Steady-state equilibrium.

C Proof of Proposition 1

The steady-state threshold value of ability, h∗s(ḡ), satisfies (20). From (B.22) and (B.27), we

obtain

∂RHS(h∗
t )

∂h∗
t

∣∣∣
h∗
t∈(h(ḡ),hmax)

< 0,

lim
h∗
t ↓h(ḡ)

RHS(h∗
t ; ḡ) = +∞.

Therefore, if hmax ≥ RHS(hmax; ḡ), there exists a unique h∗s ∈ [hmin, hmax] that satisfies

h∗
t = RHS(h∗s(ḡ); ḡ) (see Figure C.1).

Now, we derive the condition for hmax ≥ RHS(hmax; ḡ). Equation (B.27) implies that

hmax ≥ RHS(hmax; ḡ) ⇔ Λ(ḡ) ≥ αρ

Lδhmax

, (C.1)

where

Λ(ḡ) ≡ α(1− α) ·
{
1− ξ

Π(hmax; ḡ)

}
− ḡ. (C.2)
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From (C.1), we have

Λ′(ḡ) = α(1− α) · ξ

Π(hmax; ḡ)2
· θ

α− θ
· 1
ḡ
· Π(hmax; ḡ)− 1

=
α(1− α)θ

α− θ
· ξ

Π(hmax; ḡ)
· 1
ḡ
− 1,

Λ′′(ḡ) = −α(1− α)θ

α− θ
· ξ

{Π(hmax; ḡ)ḡ}2
·
{
Π(hmax; ḡ) +

θ

α− θ
· 1
ḡ
· Π(hmax; ḡ)ḡ

}
= −α(1− α)θ

α− θ
· ξ

Π(hmax; ḡ)ḡ2
·
(
1 +

θ

α− θ

)
= −α2(1− α)θ

(α− θ)2
· ξ

Π(hmax; ḡ)ḡ2

< 0.

Let us denote the maximizer of Λ(ḡ) by ḡ∗, which is given by

Λ′(ḡ∗) = 0 ⇔ α(1− α)θ

α− θ
· ξ

Π(hmax; ḡ∗)
· 1

ḡ∗
− 1 = 0

⇔ Π(hmax; ḡ
∗)ḡ∗ =

α(1− α)θξ

α− θ

⇔ Ψ
α(1−α)
α−θ α(1− α)(ḡ∗)

α
α−θL

α
α−θ =

α(1− α)θξ

α− θ

⇔ Ψ
α(1−α)
α−θ (ḡ∗)

α
α−θL

α
α−θ =

θξ

α− θ

⇔ Ψ1−αḡ∗L =

(
θξ

α− θ

)α−θ
α

⇔ ḡ∗ =
1

Ψ1−αL
·
(

θξ

α− θ

)α−θ
α

.

Therefore, Λ(ḡ) has a unique maximum point.

Using (C.2), we obtain

lim
ḡ→0

Λ(ḡ) = α(1− α)

{
1− ξ

limḡ→0Π(hmax; ḡ)

}
= −∞,

Λ(1) = α(1− α)

{
1− ξ

Π(hmax; 1)

}
− 1 < 0,

Assumption 3 ensures Λ(ḡ∗) > αρ/Lδhmax. Therefore, there exists a unique 0 < ḡmin <
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Figure C.2: The range of ḡ in which the growth rate is positive.

ḡmax < 1 which satisfiesRHS(hmax; ḡmin) = RHS(hmax; ḡmax) = hmax or h
∗s(ḡmin) = h∗s(ḡmax) =

hmax (see Figure C.2). Finally, equations (13) and (C.1) imply that h∗s(ḡ) < hmax and

ϕ(h∗s) > 0 for any ḡ ∈ (ḡmin, ḡmax).

The above shows that there exists a unique steady-state threshold value of ability, h∗s(ḡ),

for any ḡ ∈ (ḡmin, ḡmax). Since equation (20) implies that the steady state is unstable, the

economy is always in the steady state equilibrium. Since h∗s(ḡ) > h(ḡ), τ ∈ [0, 1) is satisfied in

the steady-state.

Q.E.D.

D Proof of Lemma 1

D.1 The derivation of equation (23)

Differentiating (13) with respect to ḡ yields

∂ϕ(h∗s)

∂ḡ
= −δLh∗sF ′(h∗s) · dh

∗s

dḡ
. (D.1)
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From (22), we have

dh∗s

dḡ
= −

−∂RHS(h∗s; ḡ)

∂ḡ

1− ∂RHS(h∗s; ḡ)

∂h∗s

. (D.2)

Using (B.27), we obtain

∂RHS(h∗s; ḡ)

∂ḡ

= − ρ+ σϕ(h∗s){
α(1− α)

(
1− ξ

Π(h∗s; ḡ)

)
− ḡ

}2

· LF (h∗s)δ

α

×
{
α(1− α) · ξ

Π(h∗s; ḡ)2
· θ

α− θ
· 1
ḡ
· Π(h∗s; ḡ)− 1

}
= − RHS(h∗s; ḡ)

α(1− α)
(
1− ξ

Π(h∗s;ḡ)

)
− ḡ

·
{
α(1− α)ξθ

α− θ
· 1

Π(h∗s; ḡ)ḡ
− 1

}
. (D.3)

Using the definition of ḡ∗ in Assumption 3, we obtain

α(1− α)ξθ

α− θ
· 1

Π(h∗s; ḡ)ḡ
=

α(1− α)ξθ

α− θ
· 1

α(1− α) {Ψ1−αLḡF (h∗s)}
α

α−θ

=
1

{ḡF (h∗s)}
α

α−θ

· 1

{Ψ1−αL}
α

α−θ

· ξθ

α− θ

=

(
ḡ∗

ḡF (h∗s)

) α
α−θ

. (D.4)

Inserting (22) and (D.4) yields

∂RHS(h∗s; ḡ)

∂ḡ
= −h∗s ·

(
ḡ∗

ḡF (h∗s)

) α
α−θ − 1

α(1− α)
(
1− ξ

Π(h∗s;ḡ)

)
− ḡ

. (D.5)

Next, differentiating (B.27) with respect to ḡ yields

∂RHS(h∗s; ḡ)

∂h∗s
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=
1{

α(1− α)

(
1− ξ

Π(h∗s; ḡ)

)
− ḡ

}2

·
(
LF (h∗s)δ

α

)2

×
[
σ(−1)δLh∗sF ′(h∗s) ·

{
α(1− α)

(
1− ξ

Π(h∗s; ḡ)

)
− ḡ

}
· LF (h∗s)δ

α

−(ρ+ σϕ(h∗s)) ·
{
α(1− α) · ξ

Π(h∗s; ḡ)2
· α

α− θ
· F

′(h∗s)

F (h∗s)
· Π(h∗s; ḡ) · LF (h∗s)δ

α

+

{
α(1− α)

(
1− ξ

Π(h∗s; ḡ)

)
− ḡ

}
· LF

′(h∗s)δ

α

}]
= − 1

α(1− α)
(
1− ξ

Π(h∗s;ḡ)

)
− ḡ

×
[
σδh∗sLF ′(h∗s) · α

LF (h∗s)δ

+RHS(h∗s; ḡ)
α

LF (h∗s)δ
·
{
α(1− α)ξ

α− θ
· Lδ

Π(h∗s; ḡ)
· F ′(h∗s)

+

{
α(1− α)

(
1− ξ

Π(h∗s; ḡ)

)
− ḡ

}
· LF

′(h∗s)δ

α

}]
= −

h∗sF ′(h∗s)
F (h∗s)

α(1− α)
(
1− ξ

Π(h∗s;ḡ)

)
− ḡ

×
[
ασ + α · α(1− α)ξ

α− θ
· 1

Π(h∗s; ḡ)
+

{
α(1− α)

(
1− ξ

Π(h∗s; ḡ)

)
− ḡ

}]
= −

h∗sF ′(h∗s)
F (h∗s)

α(1− α)
(
1− ξ

Π(h∗s;ḡ)

)
− ḡ

·
[
ασ + α(1− α) +

α(1− α)ξθ

α− θ
· 1

Π(h∗s; ḡ)
− ḡ

]
.

(D.6)

Inserting (D.4) into (D.6), we obtain

∂RHS(h∗s; ḡ)

∂h∗s = −

h∗sF ′(h∗s)
F (h∗s)

·
[
ασ + α(1− α) + ḡ ·

{(
ḡ∗

ḡF (h∗s)

) α
α−θ − 1

}]
α(1− α)

(
1− ξ

Π(h∗s;ḡ)

)
− ḡ

. (D.7)

Finally, inserting (D.2), (D.5), and (D.7) into (D.1), we obtain

dϕ(h∗s)

dḡ
= δLh∗sF ′(h∗s) ·

h∗s ·
(

ḡ∗
ḡF (h∗s)

) α
α−θ −1

α(1−α)(1− ξ
Π(h∗s;ḡ))−ḡ

1 +

h∗sF ′(h∗s)
F (h∗s) ·

[
ασ+α(1−α)+ḡ·

{
( ḡ∗
ḡF (h∗s))

α
α−θ −1

}]
α(1−α)(1− ξ

Π(h∗s;ḡ))−ḡ

37



=

δLh∗sF (h∗s) ·
{(

ḡ∗

ḡF (h∗s)

) α
α−θ − 1

}
F (h∗s)

h∗sF ′(h∗s)
·
[
α(1− α)

(
1− ξ

Π(h∗s;ḡ)

)
− ḡ

]
+

[
ασ + α(1− α) + ḡ ·

{(
ḡ∗

ḡF (h∗s)

) α
α−θ − 1

}] .

D.2 An inverted U-shaped relationship between ḡ and ϕ(h∗s)

Next, we show that there is an inverted U-shaped relationship between ḡ and ϕ(h∗s). Since

Assumption 2 ensures α(1 − α) − ḡ > 0, the denominator of the right-hand side of (23) is

positive. Therefore, we have

dϕ(h∗s(ḡ))

dḡ
⋛ 0 ⇔ ḡ∗ ⋛ ḡF (h∗s). (D.8)

Since h∗s(ḡmin) = h∗s(ḡmax) = hmax (see Lemma 1), we have

ḡminF (h∗s(ḡmin)) = ḡminF (hmax) = ḡmin < ḡ∗,

ḡmaxF (h∗s(ḡmax)) = ḡmaxF (hmax) = ḡmax > ḡ∗.

Therefore, there exists at least one ḡthres ∈ (ḡmin, ḡmax) such that ḡ∗ = ḡthresF (h∗s(ḡthres)) (see

Figure D.1).

Next, we prove the uniqueness of ḡthres. Note that (13) and the definition of ḡthres implies

dh∗s(ḡ)/dḡ|ḡ=ḡthres = 0. Therefore, we obtain

d {ḡF (h∗s(ḡ))}
dḡ

∣∣∣
ḡ=ḡthres

= F (h∗s(ḡthres)) + ḡthresF ′(h∗s(ḡthres)) · dh
∗s(ḡ)

dḡ

∣∣∣
ḡ=ḡthres

= F (h∗s(ḡthres))

> 0.

Therefore, ḡthres, which satisfies ḡ∗ = ḡthresF (h∗s(ḡthres)), is unique. Moreover, h∗s(ḡ) is a

U-shaped function of ḡ (see Figure D.2). Finally, (13) implies that the growth rate of Nt,

ϕ(h∗s(ḡ)), is a monotonically decreasing function of h∗s(ḡ). Therefore, we can conclude that an
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Figure D.1: Existence and uniqueness of ḡthresh．

Figure D.2: U-shaped relationship between ḡ and h∗s(ḡ).

inverted U-shaped relationship exists between ḡ and ϕ(h∗s(ḡ)).
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Q.E.D.

E Equilibrium dynamics in the homogeneous-ability econ-

omy

E.1 The Euler equation

We retain the notation used in the heterogeneous-ability model as far as possible. Most of

the first-order conditions in a heterogeneous-ability model can be applied to the homogeneous-

ability model. Note that F (h∗
t ) in the heterogeneous-ability economy is replaced by qt. When

F (h∗
t ) = qt holds, we obtain

q̇t
qt

=
F ′(h∗

t )ḣ
∗
t

F (h∗
t )

.

Then, the Euler equation in (B.9) can be rewritten as

1

σ
· (rHt − ρ)− ϕH(qt) =

1

ĉHt
· αΨ

α(1−α)
α−θ L

θ
α−θ q

α
α−θ

t ḡ
θ

α−θ

α− θ
· {α(2− α)− ḡ} · q̇t

qt
. (E.1)

where ϕH(q∗) = δLĥ(1− q∗).

E.2 Occupational choice

In an equilibrium with both workers and entrepreneurs (i.e., qt ∈ (0, 1)), the threshold condition

in (B.11) is replaced by

αΨ
α(1−α)
α−θ ḡ

θ
α−θL

θ
α−θ q

θ
α−θ

t = νH
t δĥ, (E.2)

where νH
t is a ratio of the co-state variable associated with the budget constraint and the

co-state variable associated with law of motion, i.e., νH
t ≡ ζHt /λH

t .
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Taking logarithms and differentiating both sides of (E.2) yields

θ

α− θ
· q̇t
qt

=
ν̇t
νt

=
ζ̇Ht
ζHt

− λ̇H
t

λH
t

, (E.3)

where the second equality comes from the definition of νH
t .

When F (h∗
t ) = qt holds, (B.18) can be rewritten as

ν̇t
νt

= rHt −
(1− τHt )(1− α)Lqtδĥ

{
ΠH(qt; ḡ)− ξ

}
ΠH(qt; ḡ)

. (E.4)

where

ΠH(qt; ḡ) = Ψ
α(1−α)
α−θ α(1− α)ḡ

θ
α−θL

α
α−θ q

α
α−θ

t .

Inserting (E.4) into (E.3), we obtain

θ

α− θ
· q̇t
qt

= rHt −
(1− τHt )(1− α)Lqtδĥ

{
ΠH(qt; ḡ)− ξ

}
ΠH(qt; ḡ)

. (E.5)

Then, (B.20) is replaced by

τHt =
ḡ

α(1− α)

(
1− ξ

ΠH(qt; ḡ)

) . (E.6)

Since Π(hmax; ḡ) = ΠH(1; ḡ), Assumption 2 implies ΠH(1; ḡ) > ξ and

ḡ

α(1− α)

(
1− ξ

ΠH(1; ḡ)

) < 1.

Recall that ΠH(qt; ḡ) is an increasing function and ΠH(0; ḡ) = 0. Therefore, Assumption 2
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ensures the existence of q(ḡ) ∈ (0, 1), which satisfies the following condition:

ḡ

α(1− α)

(
1− ξ

ΠH(q(ḡ); ḡ)

) = 1, (E.7)

when qt ∈ [q(ḡ), 1] and τHt ∈ [0, 1) hold. In what follows, we concentrate on the case of qt ≥ q(ḡ)

in which the government budget is balanced.

E.3 Equilibrium dynamics

From (E.1), (E.5), and (E.6), we obtain

ΓH(qt; ḡ) ·
q̇t
qt

=
(1− τHt )(1− α)Lqtδ

{
ΠH(qt; ḡ)− ξ

}
ΠH(qt; ḡ)

·
[
ĥ−RHSH(qt; ḡ)

]
,

where

RHSH(qt; ḡ) ≡ ρ+ σϕH(qt){
α(1− α)

(
1− ξ

ΠH(qt; ḡ)

)
− ḡ

}
· Lqtδ

α

,

ΠH(qt; ḡ) ≡ Ψ
α(1−α)
α−θ α(1− α)ḡ

θ
α−θL

α
α−θ q

α
α−θ

t ,

ΓH(qt; ḡ) ≡ 1

α− θ
·
[
(σα− θ)ΠH(qt; ḡ) · {α(2− α)− ḡ}+ αθ(1− α)ξ

ΠH(qt; ḡ) {α(2− α)− ḡ} − α(1− α)ξ

]
> 0.

Similar to our approach in Appendix B, we can obtain ΓH(qt; ḡ) > 0 and ΠH(qt; ḡ) > ξ ∀qt ∈

[q(ḡ), 1]. Therefore, under Assumptions 1 and 2, we have

sign
q̇t
qt

= sign
{
ĥ−RHSH(qt; ḡ)

}
. (E.8)

The equilibrium fraction of workers in the homogeneous-ability economy is characterized by

ĥ = RHSH(q∗; ḡ). (E.9)

Q.E.D.
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F Proof of Proposition 2

Here we similarly follow the proof of Proposition 1. The steady-state fraction of workers, q∗,

satisfies (24). From (25) and (E.7), we obtain

∂RHSH(qt)

∂qt

∣∣∣
qt∈(q(ḡ),1)

< 0,

lim
qt↓q(ḡ)

RHSH(qt; ḡ) = +∞.

Therefore, if ĥ ≥ RHSH(1; ḡ), there exists a unique q∗ ∈ [0, 1] that satisfies ĥ = RHSH(q∗; ḡ).

Next, we derive the condition for ĥ ≥ RHSH(1; ḡ). Note that Π(hmax; ḡ) = ΠH(1; ḡ) holds.

Then, (25) implies

ĥ ≥ RHSH(1; ḡ) ⇔ Λ(ḡ) ≥ αρ

Lδĥ
, (F.1)

where the definition of Λ(ḡ) is given in (C.2). Then, Assumption 4 ensures Λ(ḡ∗) > αρ/Lδĥ.

Therefore, there exists a unique 0 < ḡHmin < ḡHmax < 1 that satisfiesRHSH(1; ḡHmin) = RHSH(1; ḡHmax) =

ĥ or q∗(ḡHmin) = q∗(ḡHmax) = 1. Finally, (25) and (E.9) imply that q∗(ḡ) < 1 for any ḡ ∈

(ḡHmin, ḡ
H
max), and it implies that the growth rate of Nt, ϕ(h∗s), is strictly positive for any

ḡ ∈ (ḡHmin, ḡ
H
max).

The above shows that there exists a steady-state fraction of workers, q∗(ḡ), for any ḡ ∈

(ḡHmin, ḡ
H
max). Since equation (E.8) implies that the steady state is unstable, the economy is

always in the steady-state equilibrium. Since q∗(ḡ) > q(ḡ), τH ∈ [0, 1) is satisfied in the steady

state.

Q.E.D.
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G Proof of Lemma 2

Since the steady-state growth rate is given by ϕH(q∗) = δLĥ(1− q∗), we obtain

∂ϕH(q∗)

∂ḡ
= −δLĥ · dq

∗

dḡ
. (G.1)

From (E.9), we have

dq∗

dḡ
= −

−∂RHSH(q∗; ḡ)

∂ḡ

−∂RHSH(q∗; ḡ)

∂q∗

, (G.2)

Using (25), we obtain

∂RHSH(q∗; ḡ)

∂ḡ
= − ρ+ σϕH(q∗){

α(1− α)

(
1− ξ

ΠH(q∗; ḡ)

)
− ḡ

}2

· Lq
∗δ

α

×
{
α(1− α) · ξ

ΠH(q∗; ḡ)2
· θ

α− θ
· 1
ḡ
· ΠH(q∗; ḡ)− 1

}
= − RHSH(q∗; ḡ)

α(1− α)
(
1− ξ

ΠH(q∗;ḡ)

)
− ḡ

·
{
α(1− α)ξθ

α− θ
· 1

ΠH(q∗; ḡ)ḡ
− 1

}
.

(G.3)

Using the definition of ḡ∗ in Assumption 3, we have

α(1− α)ξθ

α− θ
· 1

ΠH(q∗; ḡ)ḡ
=

α(1− α)ξθ

α− θ
· 1

α(1− α) {Ψ1−αLḡq∗}
α

α−θ

=
1

{ḡq∗}
α

α−θ

· 1

{Ψ1−αL}
α

α−θ

· ξθ

α− θ

=

(
ḡ∗

ḡq∗

) α
α−θ

, (G.4)
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Inserting (G.4) into (G.3) yields

∂RHSH(q∗; ḡ)

∂ḡ
= −ĥ ·

(
ḡ∗

ḡq∗

) α
α−θ − 1

α(1− α)
(
1− ξ

ΠH(q∗;ḡ)

)
− ḡ

. (G.5)

Next, differentiating (25) with respect to ḡ yields

∂RHSH(q∗; ḡ)

∂q∗

=
1{

α(1− α)

(
1− ξ

ΠH(q∗; ḡ)

)
− ḡ

}2

·
(
Lq∗δ

α

)2

×
[
σ(−1)δLĥ ·

{
α(1− α)

(
1− ξ

ΠH(q∗; ḡ)

)
− ḡ

}
· Lq

∗δ

α

−(ρ+ σϕH(q∗)) ·
{
α(1− α) · ξ

ΠH(q∗; ḡ)2
· α

α− θ
· 1

q∗
· ΠH(q∗; ḡ) · Lq

∗δ

α

+

{
α(1− α)

(
1− ξ

ΠH(q∗; ḡ)

)
− ḡ

}
· Lδ
α

}]
= − 1

α(1− α)
(
1− ξ

ΠH(q∗;ḡ)

)
− ḡ

×
[
σδĥL · α

Lq∗δ

+RHSH(q∗; ḡ)
α

Lq∗δ
·
{
α(1− α)ξ

α− θ
· Lδ

ΠH(q∗; ḡ)

+

{
α(1− α)

(
1− ξ

ΠH(q∗; ḡ)

)
− ḡ

}
· Lδ
α

}]
= −

ĥ
q∗

α(1− α)
(
1− ξ

ΠH(q∗;ḡ)

)
− ḡ

×
[
ασ + α · α(1− α)ξ

α− θ
· 1

ΠH(q∗; ḡ)
+

{
α(1− α)

(
1− ξ

ΠH(q∗; ḡ)

)
− ḡ

}]
= −

ĥ
q∗

α(1− α)
(
1− ξ

ΠH(q∗;ḡ)

)
− ḡ

·
[
ασ + α(1− α) +

α(1− α)ξθ

α− θ
· 1

ΠH(q∗; ḡ)
− ḡ

]
.
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Inserting (G.4) into (G.6), we obtain

∂RHSH(q∗; ḡ)

∂q∗
= −

ĥ
q∗

·
[
ασ + α(1− α) + ḡ ·

{(
ḡ∗

ḡq∗

) α
α−θ − 1

}]
α(1− α)

(
1− ξ

ΠH(q∗;ḡ)

)
− ḡ

. (G.6)

Finally, inserting (G.2 ), (G.5), and (G.6) into (G.1), we obtain

dϕH(q∗)

dḡ
= δLĥ ·

ĥ ·
(

ḡ∗
ḡq∗

) α
α−θ −1

α(1−α)
(
1− ξ

ΠH (q∗;ḡ)

)
−ḡ

ĥ
q∗ ·

[
ασ+α(1−α)+ḡ·

{
( ḡ∗
ḡq∗ )

α
α−θ −1

}]
α(1−α)

(
1− ξ

ΠH (q∗;ḡ)

)
−ḡ

=

δLĥq∗ ·
{(

ḡ∗

ḡq∗

) α
α−θ − 1

}
[
ασ + α(1− α) + ḡ ·

{(
ḡ∗

ḡq∗

) α
α−θ − 1

}] . (G.7)

Next, we show that there is an inverted U-shaped relationship between ḡ and ϕH(q∗(ḡ)).

Since Assumption 2 ensures α(1 − α) > ḡ, the denominator of the right-hand side of (G.7) is

positive. Therefore, we have

dϕH(q∗)

dḡ
⋛ 0 ⇔ ḡ∗ ⋛ ḡq∗. (G.8)

Then, we show the existence and uniqueness of ḡthres,H ∈ (ḡHmin, ḡ
H
max) such that ḡ∗ =

ḡthres,Hq∗(ḡthres,H). Since q∗(ḡHmin) = q∗(ḡHmax) = 1, we obtain

ḡHminq
∗(ḡHmin) = ḡHmin < ḡ∗,

ḡHmaxq
∗(ḡHmax) = ḡHmax > ḡ∗,

Therefore, the intermediate value theorem implies that there exists at least one ḡthres,H ∈

(ḡHmin, ḡ
H
max) such that ḡ∗ = ḡthres,Hq∗(ḡthres,H).
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From the definition of ḡthres,H , we have

d {ḡq∗(ḡ)}
dḡ

∣∣∣
ḡ=ḡthres,H

= q∗(ḡthres,H) + ḡthres,H · dq
∗(ḡ)

dḡ

∣∣∣
ḡ=ḡthres,H

= q∗(ḡthres,H)

> 0.

Therefore, ḡthres,H is unique and there exists an inverted U-shaped relationship between ḡ and

ϕH(q∗(ḡ)).

Q.E.D.

H Proof of Proposition 3

Note that hmax > ĥ implies αρ/(Lδĥ) > αρ/(Lδhmax). Therefore, from (C.1), (F.1), and Figure

3, we obtain ḡmin < ḡHmin and ḡHmax < ḡmax.

Next, we show that maxḡ ϕ
H(q∗(ḡ)) > maxḡ ϕ(h

∗s(ḡ)) when ĥ is sufficiently large. Note

that the ḡthres and ḡthres,H are defined as ḡ∗ = ḡthresF (h∗s(ḡthres)) and ḡ∗ = ḡthres,Hq(ḡthres,H),

respectively. Using the definition of ḡ∗ in Assumption 3, we obtain

Π(h∗s(ḡthres); ḡthres) = Ψ1−αα(1− α)LF (h∗s(ḡthres)) ·
(

θξ

α− θ

) θ
α

, (H.1)

ΠH(q∗(ḡthres,H); ḡthres,H) = Ψ1−αα(1− α)Lq∗(ḡthres,H) ·
(

θξ

α− θ

) θ
α

. (H.2)

Since

ϕ(h∗s(ḡthres)) = δL

∫ hmax

h∗s(ḡthres)

hdF (h) > δLh∗s(ḡthres) ·
{
1− F (h∗s(ḡthres))

}
,

holds, (20) and (21) imply

h∗s(ḡthres) >
ρ+ σδLh∗s(ḡthres) ·

{
1− F (h∗s(ḡthres))

}{
α(1− α) ·

(
1− ξ

Π(h∗s(ḡthres);ḡthres)

)
− ḡthres

}
· LF (h∗s(ḡthres))δ

α

.
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Rearranging the above equation with ḡthres = ḡ∗/F (h∗s(ḡthres)), we have

F (h∗s(ḡthres)) >
1

α {(1− α) + σ}
·
[

αρ

Lδh∗s(ḡthres)
+

(
1 +

α− θ

θ

)
· ḡ∗ + ασ

]
. (H.3)

Next, let us consider the case of a homogeneous-ability economy. Equations (24) and (25)

imply

ĥ =
ρ+ σδLĥ · (1− q∗(ḡthres,H)){

α(1− α) ·
(
1− ξ

ΠH(q∗(ḡthres,H);ḡthres,H)

)
− ḡthres,H

}
· Lq∗(ḡthres,H))δ

α

.

Rearranging the above equation with ḡthres,H = ḡ∗/q∗(ḡthres,H), we obtain

q∗(ḡthres,H) =
1

α {(1− α) + σ}
·
[
αρ

Lδĥ
+

(
1 +

α− θ

θ

)
· ḡ∗ + ασ

]
. (H.4)

Therefore, from (H.3) and (H.4), F (h∗s(ḡthres)) > q∗(ḡthres,H) holds when ĥ is sufficiently

large.

Finally, we show that maxḡ ϕ
H(q∗(ḡ)) > maxḡ ϕ(h

∗s(ḡ)). From the definitions of ḡthres,H

and ḡthres, the following equations hold:

max
ḡ

ϕH(q∗(ḡ)) = ϕH(q∗(ḡthres,H)) = δLĥ · (1− q∗(ḡthres,H)),

max
ḡ

ϕ(h∗s(ḡ)) = ϕ(h∗s(ḡthres)) = δL

∫ hmax

h∗s(ḡthres)

hdF (h) < δLhmax · (1− F (h∗s(ḡthres))).

Since F (h∗s(ḡthres)) > q∗(ḡthres,H) holds when ĥ is sufficiently large, maxḡ ϕ
H(q∗(ḡ)) > maxḡ ϕ(h

∗s(ḡ))

holds when ĥ is sufficiently large.

Q.E.D.
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I Proof of Proposition 4

First, let us show that

dϕ(h∗s(ḡ))

dḡ

∣∣∣
ḡ=ḡmax

<
dϕH(q∗(ḡ))

dḡ
≤ 0 ∀ḡ ∈ [ḡthres,H , ḡHmax],

holds when hmax is sufficiently large. Since h∗s(ḡmax) = hmax holds, (23) is rewritten as

dϕ(h∗s)

dḡ

∣∣∣
ḡ=ḡmax

=

δLhmax ·
{(

ḡ∗

ḡmax

) α
α−θ − 1

}
1

hmaxF ′(hmax)
·
[
α(1− α)

(
1− ξ

Πlim(ḡmax)

)
− ḡmax

]
+

[
ασ + α(1− α) + ḡmax ·

{(
ḡ∗

ḡmax

) α
α−θ − 1

}] ,
(I.1)

where

Πlim(ḡmax) ≡ Π(h∗s(ḡmax), ḡmax) = Ψ
α(1−α)
α−θ α(1− α)ḡ

θ
α−θ
maxL

α
α−θ .

From (C.1) and Figure C.2, there exists ḡlimmax ∈ (0, 1) such that ḡmax → ḡlimmax as hmax → +∞,

and
{(

ḡ∗/ḡlimmax)
) α

α−θ − 1
}
< 0. When limhmax→+∞ hmaxF

′(hmax) ̸= 0, we obtain

lim
hmax→+∞

dϕ(h∗s(ḡ))

dḡ

∣∣∣
ḡ=ḡmax

= −∞. (I.2)

Since

−∞ <
dϕH(q∗(ḡ))

dḡ
≤ 0 ∀ḡ ∈ [ḡthres,H , ḡHmax],

is obvious, we can conclude that when hmax is sufficiently large, equation (I.1) holds.
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Next, we show that

dϕ(h∗s(ḡ))

dḡ

∣∣∣
ḡ=ḡmin

>
dϕH(q∗(ḡ))

dḡ
≥ 0 ∀ḡ ∈ [ḡHmin, ḡ

thres,H ], (I.3)

holds when hmax is sufficiently large. Since h∗s(ḡmin) = hmax, (23) is rewritten as

dϕ(h∗s)

dḡ

∣∣∣
ḡ=ḡmin

=

δLhmax ·
{(

ḡ∗

ḡmin

) α
α−θ − 1

}
1

hmaxF ′(hmax)
·
[
α(1− α)

(
1− ξ

Πlim(ḡmin)

)
− ḡmin

]
+

[
ασ + α(1− α) + ḡmin ·

{(
ḡ∗

ḡmin

) α
α−θ − 1

}] ,
(I.4)

where

Πlim(ḡmin) ≡ Π(h∗s(ḡmin), ḡmin) = Ψ
α(1−α)
α−θ α(1− α)ḡ

θ
α−θ

minL
α

α−θ .

From (C.1) and Figure C.2, there exists ḡlimmin ∈ (0, 1) such that ḡmin → ḡlimmin as hmax → +∞,

and
{(

ḡ∗/ḡlimmin)
) α

α−θ − 1
}
> 0. When limhmax→+∞ hmaxF

′(hmax) ̸= 0, we obtain

lim
hmax→+∞

dϕ(h∗s(ḡ))

dḡ

∣∣∣
ḡ=ḡmin

= +∞. (I.5)

Since

0 ≤ dϕH(q∗(ḡ))

dḡ
< +∞ ∀ḡ ∈ [ḡHmin, ḡ

thres,H ],

is obvious, we can conclude that when hmax is sufficiently large, (I.3) holds.

Q.E.D.
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