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Abstract

We study a cheap talk model in which a decision maker and an expert are
both privately informed. Both players observe independent signals that jointly
determine ideal actions for the players. Furthermore, in our model, the decision
maker can send a cheap talk message to the expert, which is followed by the ex-
pert’s cheap talk and then the decision maker’s decision making. We show that
the informed decision maker can informatively reveal her private information to
the expert but her talk does not affect the quality of the expert’s information
transmission in models in which optimal actions are only additively or multi-
plicatively separable in the two players’ information, and their preferences are
represented by quadratic loss functions. We also apply our finding to a decision
maker’s information acquisition problem.
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1 Introduction

Decision-relevant information is often shared among multiple players whose interests
do not always coincide. Hence, the organization may fail to aggregate this information
in making decisions. This phenomenon has been investigated in numerous studies.
We consider a unique situation in which a decision maker and an expert are privately
informed, and they sequentially send cheap talk messages to each other before a
decision is made. There is no monetary transfer and nether player makes commitment.
To the best of our knowledge, this situation has not hitherto been analyzed in the
literature.

The problem examined here arises when the expert does not fully reveal his infor-
mation because his preference is not the same as that of the decision maker, while the
decision maker benefits more if the expert is incentivized to transmit more accurate
information. It is not clear under these circumstances how the extent of informa-
tion revelation by the decision maker affects the expert’s incentive. We investigate
whether the decision maker benefits from revealing her private information to the
expert.

To the best of our knowledge, this paper is the first to study informative commu-
nication from the decision maker.1 Through our model of sequential cheap talk by
two informed players, we show that the decision maker cannot improve the quality of
the expert’s information transmission by sending informative messages given the fol-
lowing two assumptions: optimal actions are only additively and/or multiplicatively
separable in the two players’ information, and their preferences can be represented
by quadratic loss functions.

Consider the following example, which is an extension of a well-known example in
Crawford and Sobel (1982) (hereinafter CS). There are two players, a decision maker
and an expert. The decision maker chooses action y from real numbers. In this
model, an ideal action for the decision maker depends on the state which depends
on two signals. The signals are independent and are drawn from some continuous
distribution. The decision maker privately observes one signal, denoted θD, and the

1Some literature such as Chen (2009) explored similar models but there were only babbling
equilibra. We will discuss further details later.

2



expert privately observes the other signal, denoted θE. Each player’s payoff is given
by a quadratic loss function such that the more the action deviates from her/his ideal
action, the more loss she/he incurs. The decision maker’s ideal action is y = θDθE,
while the expert’s ideal action is y = θDθE + b, where b > 0. That is, their optimal
actions are always different by b. Thus, parameter b quantifies conflicts of interest
between the two players. Before the decision maker selects an action, the decision
maker and the expert sequentially send cheap talk messages to each other. The
decision maker talks first, and the expert talks next.2

As observed in models à la CS, the expert reveals information on θE in a partitional
form. That is, the support of the signal is partitioned into finite intervals, and the
expert reveals the interval to which his private information, θE, belongs. Given
information revealed by the expert and the decision maker’s own information, θD,
the decision maker updates her belief and chooses an optimal action conditional on
her updated belief. For the expert to reveal information in this way, the expert’s
information partition should satisfy incentive compatibility conditions. As b increases,
the number of elements the expert’s information partition can include decreases and
hence coarser information on θE is transmitted from the expert to the decision maker.
However, b is not the only factor that affects information transmission. The expert’s
inference concerning the decision maker’s private information, θD, given the decision
maker’s message mD, also matters in two ways. First, the expert’s inference on θD

determines the expert’s direction of exaggeration. When the expert’s inference on
θD is positive (negative), he exaggerates his message upward (downward) because
the decision maker chooses a large (small) action when the expert reports that θE
is large. In addition, when the expert’s inference on θD is 0, the expert does not
have an incentive to curve the decision maker’s decision because he is not sure which
direction to mislead her decision. We refer to this as a direction effect. The second
factor that influences information transmission is the decision maker’s responsiveness
to the expert’s message. When |θD| is large, the expert’s information is important
for the decision maker’s decision making and her decision is highly affected by the
expert’s message. When the expert’s inference about |θD| given the decision maker’s

2Trivially, models in which the expert talks first are equivalent to models in which the decision
maker does not talk.
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message mD is large, the expert predicts that the decision maker responds well to
his message and he can attain his self-interest with small noise. The expert chooses
an informative message under these circumstances. This effect is called a magnitude
effect.

Then, a combination of the two effects and parameter b provides a virtual conflict
of interest, an induced bias, in our model and acts as parameter b in CS when the
expert sends a message. As the conflict of interest measured by this term decreases,
the information accuracy on θE that the expert can credibly reveal increases.

Consider when the decision maker is going to choose a cheap talk message. If a
particular message serves to strictly decrease the conflict of interest term compared
to other available messages, the decision maker always uses this message regardless of
her private information. Hence, if information is transmitted from the decision maker
to the expert, the decision maker’s every message should lead to the same induced
bias in an equilibrium. If this is the case, we have found that induced biases are the
same in all equilibria that maximize the decision maker’s ex-ante expected utility. In
other words, the most informative information the expert can give the decision maker
is independent of whatever information the decision maker gives the expert.3

This result contrasts sharply with the extant literature on informed decision mak-
ers. In the usual informed decision maker model, there are monetary transfers and
a decision maker can make a commitment to her decision contingent on the message
from an expert. Some studies have focused on the benefits to the decision maker
of hiding her private information. Maskin and Tirole (1990) considered the implica-
tions of the decision maker’s and expert’s payoffs being private values. Cella (2008)
explored the consequences of correlation between the decision maker’s and expert’s
types. Unlike in the present study, they showed that the decision maker benefits from
not revealing her private information in advance because of risk sharing between
different the decision maker’s type.

In addition, the present paper adds to the large body of literature on communi-
cation among/between multiple informed parties. In the literature, researchers have

3In a general setting, there are equilibria such that the expert has different induced biases for
different messages. If we restrict our attention to equilibria that maximize the decision maker’s
utility, these cases can be precluded.

4



explored communication from multiple informed experts to an uninformed decision
maker. Wolinsky (2002) and McGee and Yang (2013) approached this problem in the
context of multiple experts observing non-overlapped information. Multiple experts
observe the same signals in Battaglini (2002), Krishna and Morgan (2001), and Miura
(2014).

Other researchers have focused on communication between an expert and a deci-
sion maker where both are privately informed. The most similar of such studies to
the present study are those of Harris and Raviv (2005) and Chen (2009).4 In Harris
and Raviv’s model, a decision maker and an expert observe independent information
and the decision maker’s ideal action is the sum of the decision maker’s own and the
expert’s information. However, their approach differs from ours in that they discussed
the optimal allocation of a decision right without considering communication from
the decision maker.5 In fact, our results reveal that the decision maker’s talk has no
effect in their setting. Chen studied communication from the decision maker. In her
model, the decision maker privately learns a signal about a distribution of the expert’s
private type, and she showed that informative communication by the decision maker
fails in the equilibrium due to the binary signal. 6 On the other hand, in our model,
the decision maker observes her private signal drawn from sets with many elements..
Hence, our decision maker can successfully reveal her information to the expert.

Moreno de Barreda (2013), Lai (2014), and Ishida and Shimizu (2016, 2018) con-
figured a model in which a decision maker and an expert observe different correlated
signals. They showed a tradeoff between the quality of the decision maker’s infor-
mation and the expert’s message, but did not consider any communication from the
decision maker.

Kolotilin, Mylovanov, Zapechelnyuk and Li (2017) showed equivalence between a
persuasion mechanism that conditions information disclosure on the decision maker’s
report about her type and an experiment that discloses information independent of

4McGee (2013) investigated his model with an informed decision maker but restricted his atten-
tion to a babbling equilibrium.

5Aghion and Tirole (1997) also discussed allocation of a decision right when the information
acquisition of a decision maker and an expert matters, rather than information transmission.

6Chen and Gordon (2015) also considered a setup of Chen (2009) and showed that the decision
maker can fully reveal her information if her signal is verifiable (that is, the decision maker discloses
her private signal or hides it).

5



the decision maker’s type.
The remainder of this article is organized as follows. Section 2 introduces the

model. Section 3 presents the main results. Section 4 discusses examples. Section 5
extends our basic model and evaluates the value of the decision maker’s information
acquisition. Finally, Section 6 presents our conclusions.

2 Model

There are two players, a decision maker (or D) and an expert (or E). The decision
maker decides an action y from R. There are two-dimensional signals (θD, θE) ∈
ΘD ×ΘE =

[
θD, θ̄D

]
×
[
θE, θ̄E

]
⊂ R2, which are independent. The signals are drawn

according to cumulative distributions ΦD and ΦE. The decision maker privately and
perfectly learns θD and the expert does the same for θE.

The payoff for each player is given by a quadratic loss function. The payoff
functions of the decision maker and the expert are as follows:

UD = −{f (θD, θE)− y}2 ,

UE = −{f (θD, θE) + b− y}2 ,

where b ∈ R, and f (·, ·) is a bivariate function such that

f (θD, θE) = g (θD)h (θE) + s (θD)

where g (·) and s (·) are continuous almost everywhere in θD and h (·) is continuous and
strictly increasing in θE. Examples, which will be examined later, include f (θD, θE) =

θDθE and f (θD, θE) = θD + θE.

After observing (θD, θE), the decision maker sends a cheap talk message mD ∈ ΘD

to the expert, and the expert sends a cheap talk message mE ∈ ΘE to the decision
maker. Each player’s message reaches the other player without any noise.

All aspects of the game except for (θD, θE) are common knowledge.
The timeline is as follows.
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1. Nature chooses the two-dimensional signals θD and θE. The decision maker
observes θD and the expert observes θE.

2. The decision maker sends a cheap talk message mD to the expert.

3. The expert observes this message and then sends a cheap talk message mE to
the decision maker.

4. The decision maker selects an action y, and both players’ payoffs are realized.

The solution concept is a Perfect Bayesian equilibrium.7 In common with other cheap
talk models, we face the issue of multiple equilibria. We focus on the ex-ante optimal
equilibrium, the Perfect Bayesian equilibrium in which the decision maker’s ex-ante
expected utility is the highest.

Note that the ex-ante optimal equilibrium is ex-ante Pareto optimal when the
decision maker chooses her ex-post optimal action.8

In our model, the decision maker does not have commitment power and chooses
her ex-post optimal action conditional on the triplet

(
θD,m

D,mE
)
. Her problem of

choosing her optimal action is

max
y∈R

EθE
[
−{f (θD, θE)− y}2 | θD,mD,mE

]
,

where Er [·] is expectation with a random variable r. The decision maker’s optimal
action is denoted by

y
(
θD,m

D,mE
)
≡ EθE

[
f (θD, θE) | θD,mD,mE

]
.

Before proceeding to a general analysis, we consider the examples in the next
section in order to clarify our problems.

7This includes mixed strategies.
8See Appendix for the proof.
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3 Examples

3.1 Linear function

Let f (θD, θE) = θD + θE. The decision maker chooses

y
(
θD,m

D,mE
)

= EθE
[
θE | mD,mE

]
+ θD,

and the expert’s interim expected utility is

EθD
[
UD | mD

]
= EθD

[
−
(
θD + θE + b− EθE

[
θE|mD,mE

]
− θD

)2 | mD
]

= −
(
θE + b− EθE

[
θE | mD,mE

])2
.

Since the expert’s expected utility is independent of θD, his decision could be affected
by the decision maker’s message only through the decision maker’s action, which is
her inference about θE from

(
mD,mE

)
. However, mD does not affect the expert’s

sequential rationality nor his strategy.

3.2 Cobb-Douglas function

Let f (θD, θE) = θDθE. Given a message mE, the decision maker chooses

y
(
θD,m

D,mE
)

= θDEθE
[
θE | mD,mE

]
.

Suppose that the expert observing θE is indifferent between sending messages m̂E

and m̃E, then

EθD

[
−
(
θDθE + b− θDEθE

[
θE | mD, m̂E

])2 | mD
]

= EθD

[
−
(
θDθE + b− θDEθE

[
θE | mD, m̃E

])2 | mD
]
,
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which implies

EθE
[
θE | mD, m̂E

]
+ EθE

[
θE | mD, m̃E

]
− 2θE = 2b

EθD
[
θD | mD

]
EθD [θ2

D | mD]
.

Again, mD does not affect sequential rationality on the left-hand side. On the other
hand, the right-hand side is affected by the decision maker’s message through the last

term, b
EθD [θD|mD]
EθD [θ2D|mD]

.

Further, suppose that each of θD and θE is drawn according to a uniform distri-
bution with support [0, 1] and b = 1

12
. There are multiple equilibria as follows.

Babbling equilibrium The decision maker’s strategy is independent of her signal.
The expert uniquely partitions his signal space into

[
0, 1

4

)
and

[
1
4
, 0
]
when his

message is informative.

Informative equilibrium The decision maker sends two different messages. She
sends m̂D when θD ∈

[
0, 3

7

)
∪
(

6
7
, 1
]
and m̃D when θD ∈

[
3
7
, 6

7

]
. Given each

message, the expert uniquely partitions his signal space into
[
0, 1

4

)
and

[
1
4
, 0
]

when his message is informative.

In these examples, it turns out that the expert has the same information partitionin
both equilibria. Besides these equilibria, there are other equilibria such as mixed
equilibria. It is not known for us if there exists any equilibrium which the decision
maker prefers to the babbling equilibrium.

4 General Results

In this section, we outline and explore our main results. First, we characterize the
expert’s equilibrium strategy.

Proposition 1. The expert’s message strategy is characterized by interval equilibria
such that the expert partitions his information set into finite intervals and only reveals
the interval to which his information θE belongs. Moreover, the expert behaves as if
dissonance of the ideal action between the expert and decision maker is B

(
mD
)
≡

b
EθD [g(θD)|mD]
EθD [g(θD)2|mD]

.
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Proof. See the Appendix.

As in the CS model, the expert reveals information on θE in a partitional form.
The partition depends on not only the expert’s bias, b, but also the decision maker’s
message and the expert’s inference on θD. Let x = (x0, x1, · · · , xI) define partitions
characterizing the expert’s message strategy, where I is a positive integer. We let the
expert’s message be denoted by mE = mE

i if θE ∈ (xi−1, xi) for i ∈ {1, . . . , I}.
The expert’s equilibrium partition can be obtained as follows. The decision

maker’s optimal action given θD and that the expert sends message mE = mE
i is

y
(
θD,m

D,mE
i

)
= g (θD)EθE

[
h (θE) | mD,mE

i

]
+ s (θD) , (1)

where EθE
[
h (θE) |mD,mE

i

]
is the decision maker’s inference on h (θE). Given the

decision maker’s action, the arbitrage condition for the expert observed θE = xi is

EθD

[
−
{
f (θD, xi) + b− y

(
θD,m

D,mE
i

)}2 | mD
]

= EθD

[
−
{
f (θD, xi) + b− y

(
θD,m

D,mE
i+1

)}2 | mD
]
,

which can be rewritten as

EθE
[
h (θE) | mD,mE

i+1

]
+ EθE

[
h (θE) | mD,mE

i

]
− 2h (xi) = 2b

EθD
[
g (θD) | mD

]
EθD

[
g (θD)2 | mD

] .
(2)

This equation clarifies how the decision maker’s message affects the expert’s behavior.
The left-hand side of the equation is a function of the partitions, which are not affected
bymD under sequential rationality. These partitions are conditional on the right hand

side, where we refer to B
(
mD
)
≡ b

EθD [g(θD)|mD]
EθD [g(θD)2|mD]

as an induced bias.
The numerator explains the direction in which the expert has an incentive to

mislead the decision maker, which we refer to as a direction effect. Assume b > 0.
When g (θD) is positive, the decision maker takes large action for large h (θE), and the
expert wants to mislead the decision maker’s belief on h (θE) upward. Since θD is the
decision maker’s private information, this effect is through the expert’s expectation on
g (θD) given the decision maker’s message, that is, when EθD

[
g (θD) | mD

]
is positive
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(negative), the expert exaggerates so that the decision maker believes h (θE) is large
(small), and the expert has an incentive to mislead her belief upward (downward).
When EθD

[
g (θD) | mD

]
is close to 0, the expert is uncertain whether g (θD) is positive

or negative and is uncertain as to which direction he should mislead the decision
maker. The expert has a small incentive to mislead her.

The denominator, 1

EθD [g(θD)2|mD]
, is referred to as a magnitude effect, which in-

dicates how important the expert’s information is for the decision making. When
|g (θD)| is large, the expert’s information, h (θE), is significantly important to the
decision maker. The decision maker’s action is sensitive to the expert’s message, and
the expert can attain his self-interest by adding small noise to his message. The
decision maker’s message thus affects the expert through this induced bias.

Given h (θE) is strictly increasing, partitions that satisfy (2) are θE = x0 < x1 <

· · · < xI = θ̄E when B ≥ 0 and θE = xI < · · · < x1 < x0 = θ̄E when B < 0.
Analogous to the condition in CS, we define our monotonicity condition as follows.

Definition 1. Given each mD, the M condition is satisfied if for any two solutions
to (2), x̂ and x̃ with x̂0 = x̃0 and x̂1 >x̃1, then x̂i >x̃i for all i ≥ 2.

For expository purposes, we now make the following assumption.

Assumption 1. The M condition holds for the expert’s information partition.

This condition is satisfied, for example, when f (θD, θE) = θDθE and θD and θE are
uniformly distributed. When the M condition is satisfied, the decision maker is better
off if the expert sends a message according to a partition with more intervals. This
is because the expert’s utility is represented by a quadratic loss function. Hence, in
the ex-ante optimal equilibrium, the expert’s information partition must include the
maximum number of intervals among the perfect Bayesian equilibria for some induced
bias.9

Now, we consider the decision maker’s message. When the M condition holds, the
decision maker’s interim expected utility can be denoted by a function of an induced
bias,

EUD
(
B
(
mD
)
| θD

)
.

9This expert’s action is supported by the NITS condition (Chen et al., 2008).
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Note that this function is unimodal with a peak at zero induced bias.10 The deci-
sion maker sends mD to maximize her expected utility. We show that the decision
maker can send informative messages in Perfect Bayesian equilibria. Unlike the ex-
pert’s strategy, the decision maker’s equilibrium strategy is not a simple partition
of ΘD. Suppose that the decision maker sends J messages,

{
mD

1 ,m
D
2 , · · · ,mD

J

}
, on

the equilibrium path where J is any positive integer. Among these messages, if two
messages mD

j and mD
k result in different induced biases and EUD

(
B
(
mD
j

)
| θD

)
>

EUD
(
B
(
mD
k

)
| θD

)
for some j, k ∈ {1, 2, . . . , J}, the decision maker does not send

message mD
k . Therefore, the decision maker should be indifferent for all messages on

this equilibrium:

EUD
(
B
(
mD
j

)
| θD

)
= EUD

(
B
(
mD
k

)
| θD

)
(∀j, k ∈ {1, 2, . . . , J}) (3)

From this condition, we can further induce the following result for the induced bias
in the ex-ante optimal equilibrium.

Proposition 2. The decision maker’s message strategy is the ex-ante optimal equi-
librium only if it induces

EθD
[
g (θD) | mD

1

]
EθD

[
g (θD)2 | mD

1

] =
EθD

[
g (θD) | mD

j

]
EθD

[
g (θD)2 | mD

j

] (∀j ∈ {1, 2, . . . , J}) .

Proof. See the Appendix.

When
EθD [g(θD)|mDj ]
EθD [g(θD)2|mDj ]

EθD [g(θD)|mDk ]
EθD [g(θD)2|mDk ]

≥ 0, the above condition is immediate from

condition (3). When
EθD [g(θD)|mDj ]
EθD [g(θD)2|mDj ]

EθD [g(θD)|mDk ]
EθD [g(θD)2|mDk ]

< 0 for some j, k ∈ {1, 2, . . . , J},
then the decision maker is better off hiding her private information rather than sending
an informative message and this message strategy cannot be the ex-ante optimal
equilibrium.

Now we compare two different Perfect Bayesian equilibria that satisfy Proposi-
tion 1. Let m̂D =

{
m̂D

1 , · · · , m̂D
Ĵ

}
be the decision maker’s messages in one equilib-

10Apply CS’s Theorems 3-4 for the induced bias B instead of b.
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θD θ̄D
m

m′ m′

Figure 1: Example: the ex-ante optimal equilibrium such as
EθD [g(θD)|m]

EθD [g(θD)2|m]
EθD [g(θD)|m′]
EθD [g(θD)2|m′]

> 0.

θD θ̄D

m m′

Figure 2: Example: a Perfect Bayesian equilibrium such as
EθD [g(θD)|m]

EθD [g(θD)2|m]
EθD [g(θD)|m′]
EθD [g(θD)2|m′]

< 0.

rium and m̃D =
{
m̃D

1 , · · · , m̃D
J̃

}
be the messages in another equilibrium. We have

EθD [g(θD)|m̂D1 ]
EθD [g(θD)2|m̂D1 ]

=
EθD [g(θD)|m̂Dj ]
EθD [g(θD)2|m̂Dj ]

(
∀j ∈

{
1, 2, . . . , Ĵ

})
and

EθD [g(θD)|m̃D1 ]
EθD [g(θD)2|m̃D1 ]

=
EθD [g(θD)|m̃Dk ]
EθD [g(θD)2|m̃Dk ](

∀k ∈
{

1, 2, . . . , J̃
})

. However we do not know whether
EθD [g(θD)|m̂D1 ]
EθD [g(θD)2|m̂D1 ]

and
EθD [g(θD)|m̃D1 ]
EθD [g(θD)2|m̃D1 ]

are different or not. If they are different, then the decision maker may be better off by
choosing the message strategy that induces an induced bias which she prefers. Hence,
the remaining question is whether induced biases can be varied by the decision maker’s
message strategies.

Lemma 1. Consider the decision maker’s strategy in which he sends
{
mD

1 , · · · ,mD
J

}
.

If
EθD

[
g (θD) | mD

1

]
EθD

[
g (θD)2 | mD

1

] =
EθD

[
g (θD) | mD

j

]
EθD

[
g (θD)2 | mD

j

] (∀j ∈ {1, 2, . . . , J})

then the following relation holds;

EθD [g (θD)]

EθD
[
g (θD)2] =

EθD
[
g (θD) | mD

j

]
EθD

[
g (θD)2 | mD

j

] (∀j ∈ {1, 2, . . . , J}) .
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Proof. See the Appendix.

The lemma reveals that for the decision maker’s two different strategies, if
EθD [g(θD)|m̂D1 ]
EθD [g(θD)2|m̂D1 ]

=

EθD [g(θD)|m̂Dj ]
EθD [g(θD)2|m̂Dj ]

and
EθD [g(θD)|m̃D1 ]
EθD [g(θD)2|m̃D1 ]

=
EθD [g(θD)|m̃Dk ]
EθD [g(θD)2|m̃Dk ]

, then EθD [g(θD)]

EθD [g(θD)2]
=

EθD [g(θD)|m̂D1 ]
EθD [g(θD)2|m̂D1 ]

=

EθD [g(θD)|m̃D1 ]
EθD [g(θD)2|m̃D1 ]

. In other words, although the expert’s belief on the decision maker’s
type depends on the decision maker’s messages and there are multiple equilibria, in-
cluding an equilibrium in which no information is revealed by the decision maker, the
expert’s induced biases are the same in all equilibria. This result has an important
implication for model analysis. Our main results are presented here.

Proposition 3. The induced biases are the same for all the ex-ante optimal equilib-
ria. Hence, the expert’s information partition is independent of the decision maker’s
messages in the ex-ante optimal equilibria.

The next corollary immediately follows from Proposition 3.

Corollary 1. The upper bound of the decision maker’s ex-ante expected payoff can
be calculated assuming that the decision maker sends babbling messages.

Hence, when we need to solve for the upper bound of the decision maker’s expected
utility, we can conduct our analysis by assuming that the decision maker cannot send
any message to the expert.

5 Value of the Decision Maker’s Information

This section applies the above results and explores the value of the decision maker’s
information acquisition. The question is whether the decision maker’s information
acquisition of θD can facilitate communication from the expert. We compare the cases
in which the decision maker learns and does not learn realization of θD. Whether the
decision maker knows realization of θD is common knowledge.

First, when the decision maker learns θD, she can send some messages to the
expert. When we restrict our attention to the outcome that maximizes the decision
maker’s ex-ante expected utility, our result in the previous section indicates that we
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can restrict our attention to the case in which the decision maker commits to not
sending any message. In this case, the expert behaves as if his bias is b EθD [g(θD)]

EθD [g(θD)2]
.

Next, when the decision maker does not acquire any information about θD, there
is no communication from the decision maker. The decision maker’s optimal action
given mE is

y
(
mE
)
≡ EθD [g (θD)]EθE

[
h (θE) | mE

]
+ EθD [s (θD)] ,

and the expert’s arbitrage condition sending different messages mE
i−1 and mE

i when
he observes xi is

EθD

[
−
{
f (θD, xi) + b− y

(
mE
i−1

)}2
]

= EθD

[
−
{
f (θD, xi) + b− y

(
mE
i

)}2
]
.

This condition can be rewritten as

EθE
[
h (θE) | mE

i−1

]
+ EθE

[
h (θE) | mE

i

]
− 2h (xi) = 2b

1

EθD [g (θD)]
,

and the expert behaves as if his bias is b 1
EθD [g(θD)]

.
From Jensen’s inequality,

EθD
[
g (θD)2] ≥ EθD [g (θD)]2 ⇔ 1

EθD [g (θD)]
≥ EθD [g (θD)]

EθD
[
g (θD)2] ,

holds if θD is degenerate. The expert’s induced bias is smaller when the decision
maker learns realization of θD, as compared to the case in which the decision maker
does not learn realization of θD.

This shows that the decision maker’s information acquisition on θD facilitates
communication from the expert. Moreover, the decision maker can take an action
close to her own ideal action when she knows θD. Thus the decision maker benefits
from her information acquisition.

Proposition 4. The upper bound of the decision maker’s expected utility increases if
the decision maker acquires information.

In contrast with this result, Moreno de Barreda (2013), Lai (2014), and Ishida and
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Shimizu (2016) found that the decision maker’s private information harms communi-
cation from the expert in environments in which the decision maker observes a noisy
signal of the expert’s private information. According to Moreno de Barreda, their
results are due to a tradeoff between the information effect and the risk effect. When
the decision maker has accurate information, her action is not sensitive to the expert’s
message because its importance is small. The expert needs to exaggerate his message
more to achieve his self-interest. Hence, the information effect impedes information
transmission from the expert. At the same time, when the decision maker has her
private information, the decision maker’s action is now a lottery for the expert. The
expert’s incentive to exaggerate is weakened by a lottery over actions. Hence, the
decision maker’s private information facilitates information transmission through the
risk effect. Since the information effect overwhelms the risk effect, communication
from the expert is accurate when the decision maker has private information.

In our model, the information effect is null because the decision maker and the ex-
pert observe independent signals, whereas the risk effect persists. When the decision
maker does not observe θD, the induced bias is b 1

EθD [g(θD)]
because the direction effect

is EθD [g (θD)] and the magnitude effect is 1
EθD [g(θD)]2

. This magnitude effect is smaller

than that when the decision maker observes θD, 1

EθD [g(θD)2]
, due to the risk effect.

In summary, the decision maker’s information acquisition facilitates communication
from the expert.11

6 When Degree of the Loss Function is Higher

In this section, we extend our analysis to the case in which the expert’s utility is

UE = −{f (θD, θE) + b− y}2n ,

11Ishida and Shimizu (2018) found another effect whereby the decision maker’s information acqui-
sition facilitates communication from the expert. When the decision maker and the expert observe
correlated signals, the expert’s message provides information not only about the true state but also
about the reliability of the decision maker’s private information.
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where n ∈ N. Given the decision maker’s reaction (1), the expert’s interim expected
utility can be rewritten as

− EθD
[
g (θD)2n | mD

]
2n∑
k=0

(−1)α
(

2n

α

)
b2n−α EθD

[
g (θD)α | mD

]
EθD

[
g (θD)2n | mD

] [EθE [h (θE) | mD,mE
]
− h (θE)

]α
.

Hence, a series of
{
b2n−α EθD [g(θD)α|mD]

EθD [g(θD)2n|mD]

}
α={0,...,2n}

is an induced bias of this ex-

pert. If b2n−α EθD [g(θD)α|mD1 ]
EθD [g(θD)2n|mD1 ]

= b2n−α EθD [g(θD)α|mDj ]
EθD [g(θD)2n|mDj ]

for all α ∈ {0, . . . , 2n} and

j ∈ {1, 2, . . . , J}, we can show that b2n−α EθD [g(θD)α]

EθD [g(θD)2n]
= b2n−α EθD [g(θD)α|mDj ]

EθD [g(θD)2n|mDj ]
for all

α in the same way as Lemma 2. However, we know little about a condition corre-
sponding to the M condition when n ≥ 2, and it is an open question whether the
independence result shown in Proposition 2 holds for this case.

7 Conclusion

The present paper studies how the decision maker’s message affects communication
from the expert when both the decision maker and the expert are privately informed.
When ideal actions are multiplicatively separable in the two players’ information,
the decision maker’s message affects the expert’s behavior through his belief on the
decision maker’s type and the importance of his information to the decision maker’s
decision. Although the decision maker’s message has an effect on the expert’s belief,
the decision maker can only configure and send messages that give the expert the
same induced bias in equilibria. Furthermore, the decision maker cannot improve
the upper bound of her own ex-ante expected utility by managing her message. In
addition, when ideal actions are additively separable in the two players’ information,
the decision maker’s message has no effect at all on the expert’s belief. In summary,
the decision maker’s message does not affect the upper bound of her expected utility
in our model.

This finding contributes to knowledge in organizational economics. A number
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of studies have considered one-sided (the expert’s) private information. However, it
was hitherto not clear whether these results still hold when the decision maker has
private information. Our results suggest that even when the decision maker can send
a message to the expert, the optimal outcome for the decision maker can be obtained
by assuming that the decision maker cannot send a message to the expert.

Discussion In our game, multiple equilibria exist and some are less informative
than others. We focus on the ex-ante optimal equilibrium. Although the expert’s
equilibrium strategy profile can be justified with the NITS condition (Chen et al.,
2008), an equivalent condition for justifying the decision maker’s equilibrium strategy
is unknown.

Another unclarified issue is whether the current results hold for more general
settings, namely for the case in which f (θD, θE) is neither additively nor multiplica-
tively separable, two stochastic variables are correlated, and the utility function is
not simply quadratic.

These issues are left for future research.
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A Proofs

A.1 Proof of Pareto Optimality of the Ex-ante Optimal Equi-

librium

Proof. When the decision maker chooses her ex-post optimal action, y
(
θD,m

E
)
≡

EθE
[
f (θD, θE) | mE

]
, the decision maker’s ex-ante expected payoff is

EUD = −E
[
f (θD, θE)− y

(
θD,m

E
)]2

,

where E [·] is the expectation with both θD and θE. The expert’s ex-ante expected
payoff is

EUE = −E
[
f (θD, θE) + b− y

(
θD,m

E
)]2

= −E
[
f (θD, θE)− y

(
θD,m

E
)]2

+ 2bE
[
f (θD, θE)− y

(
θD,m

E
)]
− b2.

Since E [f (θD, θE)] = E
[
y
(
θD,m

E
)]
, we have

EUD = EUE + b2.

When a perfect Bayesian equilibrium maximizes the decision maker’s ex-ante expected
utility, that of the expert is also maximized.

A.2 Proof of Proposition 1

Proof. Through the proof, rather than specifying the decision maker’s talk strategy,
we suppose that the decision maker already sent some message mD according to
some strategy, and analyze the decision maker’s action strategy and the expert’s talk
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strategy both of which are sequentially rational. First, the decision maker’s optimal
action (i.e., her equilibrium action strategy) is given by (1) in Section 4.

Next, consider the expert’s interim expected utility right after the decision maker
sends a message,

EθD
[
−{f (θD, θE) + b− y}2 | mD,mE

]
which is strictly concave with respect to action y. Let h̄ denote the decision maker’s
belief:

h̄ ≡ EθE
[
h (θE) | mD,mE

]
.

Then, the expert’s interim expected utility is described as:

EθD

[
−
{
f (θD, θE) + b−

(
g (θD) h̄+ s (θD)

)}2 | mD
]

= −EθD
[
g (θD)2 | mD

] (
h (θE)− h̄

)2 − 2bEθD
[
g (θD) | mD

] (
h (θE)− h̄

)
− b2

which is strictly concave with respect to the decision maker’s belief h̄.
For the expert, the ideal decision maker’s belief h̄ is

h (θE) +B
(
mD
)
,

where B
(
mD
)
≡ b

EθD [g(θD)|mD]
EθD [g(θD)2|mD]

, while the decision maker wants to know the truth

h (θE). That is, at the interim stage, the ideal decision maker’s belief is strictly
increasing in θE for each player since h (·) is strictly increasing. Moreover, the ideal
beliefs always differ by the induced bias B

(
mD
)
, which is constant given mD .

Therefore, our induced bias B
(
mD
)
(difference in the ideal interim belief on h (θE)

between the players) is comparable to bias b in CS’s model. We can make claims like
CS’s Lemma 1 and Theorem 1 and show that the expert’s equilibrium talk strategies
are characterized by monotone partitions.

A.3 Proof of Proposition 2

Proof. In the following proofs, we use the following notation:
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Gj ≡
∫
θD∈ΘD

g (θD) dΦD
(
θD | mD

j

)
,

and
Lj ≡

∫
θD∈ΘD

g (θD)2 dΦD
(
θD | mD

j

)
.

Note that,

EθD
[
g (θD) | mD

j

]
EθD

[
g (θD)2 | mD

j

] =

∫
θD∈ΘD

g (θD) dΦD
(
θD | mD

j

)
/
∫
θD∈ΘD

dΦD
(
θD | mD

j

)∫
θD∈ΘD

g (θD)2 dΦD
(
θD | mD

j

)
/
∫
θD∈ΘD

dΦD
(
θD | mD

j

) =
Gj

Lj
.

Furthermore,

EθD [g (θD)] =
J∑
j=1

∫
θD∈ΘD

g (θD) dΦD
(
θD | mD

j

)
=

J∑
i=1

Gj,

and

EθD
[
g (θD)2] =

J∑
j=1

∫
θD∈ΘD

g (θD)2 dΦD
(
θD | mD

j

)
=

J∑
j=1

Lj.

First, suppose GjGk ≥ 0 for all j, k ∈ {1, 2, . . . , J}. Then Gj
Lj

=
EθD [g(θD)|mDj ]
EθD [g(θD)2|mDj ]

=

EθD [g(θD)|mDk ]
EθD [g(θD)2|mDk ]

= Gk
Lk

when EUD

(
b
EθD [g(θD)|mDj ]
EθD [g(θD)2|mDj ]

∣∣∣∣ θD) = EUD

(
b
EθD [g(θD)|mDk ]
EθD [g(θD)2|mDk ]

∣∣∣∣ θD) .

Now, suppose GjGk < 0 for some j, k ∈ {1, 2, . . . , J} in the ex-ante optimal
equilibrium. Define sets of integers J+ ≡ {j | Gj ≥ 0, j ∈ {1, 2, . . . , J}} and J

− ≡
{j | Gj < 0, j ∈ {1, 2, . . . , J}}. Then, both J+ and J− are non-empty. Without loss
of generality, let G1 > 0 > GJ . When EθD [g(θD)]

EθD [g(θD)2]
is positive,

0 <
EθD [g (θD)]

EθD
[
g (θD)2] < EθD

[
g (θD) | mD

1

]
EθD

[
g (θD)2 | mD

1

] ⇔ ∑
j∈J+ Gj +

∑
j∈J− Gj∑J

j=1 Lj
<
G1

L1

⇔ L1

∑
j∈J+

Gj +
∑
j∈J−

Gj

 < G1

J∑
j=1

Lj.

From G1

L1
=

Gj
Lj

for j ∈ J+ and L1

∑
j∈J+ Gj = G1

∑
j∈J+ Lj, the above condition is
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equivalent to
L1

∑
j∈J−

Gj < G1

∑
j∈J−

Lj.

Since G1 > 0,
∑

j∈J− Gj < 0 and Lj > 0 for all j ∈ {1, . . . , J}, this inequal-

ity is true. This contradicts the ex-ante optimality because EUD

(
EθD [g(θD)]

EθD [g(θD)2]

)
>

EUD

(
b
EθD [g(θD)|mD1 ]
EθD [g(θD)2|mD1 ]

∣∣∣∣ θD).
Similarly, when EθD [g(θD)]

EθD [g(θD)2]
is negative,

0 >
EθD [g (θD)]

EθD
[
g (θD)2] > EθD

[
g (θD) | mD

J

]
EθD

[
g (θD)2 | mD

J

] ⇔ ∑
j∈J+ Gj +

∑
j∈J− Gj∑J

j=1 Lj
>
GJ

LJ

⇔ LJ

∑
j∈J+

Gj +
∑
j∈J−

Gj

 > GJ

J∑
j=1

Lj

⇔ LJ
∑
j∈J+

Gj > GJ

∑
j∈J+

Lj,

from GJ
LJ

=
Gj
Lj

for j ∈ J− and LJ
∑

j∈J− Gj = GJ

∑
j∈J− Lj. The inequality is true

because GJ < 0,
∑

j∈J+ Gj ≥ 0 and Lj > 0. Again, this is a contradiction because

EUD

(
EθD [g(θD)]

EθD [g(θD)2]

)
> EUD

(
b
EθD [g(θD)|mDj ]
EθD [g(θD)2|mDj ]

∣∣∣∣ θD).
Thus, GjGk ≥ 0 and

EθD [g(θD)|mDj ]
EθD [g(θD)2|mDj ]

=
EθD [g(θD)|mDk ]
EθD [g(θD)2|mDk ]

for all j, k ∈ {1, 2, . . . , J}, and
we have proved our claim.

A.4 Proof of Lemma 1

Proof. We can rewrite our condition as

EθD
[
g (θD) | mD

j

]
EθD

[
g (θD)2 | mD

j

] =
EθD

[
g (θD) | mD

k

]
EθD

[
g (θD)2 | mD

k

] ⇔ Gj

Lj
=
Gk

Lk
⇔ GjLk = GkLj, (4)

for all j, k ∈ {1, 2, · · · , J}.
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Observe

G1

L1

=
EθD

[
g (θD) | mD

1

]
EθD

[
g (θD)2 | mD

1

] =
EθD [g (θD)]−

∑J
j=2Gj

EθD
[
g (θD)2]−∑J

j=2 Lj

⇔ G1EθD
[
g (θD)2]−G1

J∑
j=2

Lj = L1EθD [g (θD)]− L1

J∑
j=2

Gj.

According to (4), the second terms on both sides offset. Therefore,

G1EθD
[
g (θD)2] = L1EθD [g (θD)]⇔ EθD [g (θD)]

EθD
[
g (θD)2] =

EθD
[
g (θD) | mD

1

]
EθD

[
g (θD)2 | mD

1

] .
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