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Abstract
We study the design of self-enforcing mechanisms that rely on neither a trusted

third party (e.g., court, trusted mechanism designer) nor a long-term relationship.
Instead, we use a smart contract written on blockchains as a commitment device.
We design the digital court, a smart contract that identifies and punishes agents who
reneged on the agreement. The digital court substitutes the role of legal enforcement
in the traditional mechanism design paradigm. We show that, any agreement that
is implementable with legal enforcement can also be implemented with enforcement
by the digital court. To pursue a desirable design of the digital court, we study a
way to leverage truthful reports made by a small fraction of behavioral agents. Our
digital court has a unique equilibrium as long as there is a positive fraction of behavioral
agents, and it gives correct judgment in the equilibrium if honest agents are more likely
to exist than dishonest agents. The platform for smart contracts is already ready in
2020; thus, self-enforcing mechanisms proposed in this paper can be used practically,
even now. As our digital court can be used for implementing general agreements, it
does not leak the detailed information about the agreement even if it is deployed on a
public blockchain (e.g., Ethereum) as a smart contract.
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1 Introduction

In many contracts and mechanisms, parties are often tempted to renege ex post (e.g., buyers
may refuse to make payments after the delivery of the good). If each party is afraid of
ex post renege in later stages, the parties cannot make a viable agreement (McAfee and
McMillan 1987). In the traditional mechanism design paradigm, legal enforcement (contract
enforcement with court involvement) has been used to deter violations of the agreement.
However, legal enforcement is often slow and needs a high judicial cost. To run a mechanism
in a decentralized manner, parties can alternatively rely on the long-term relationship — if
parties can reward honest behaviors with future payoffs, reneging could be prevented (Athey
and Segal 2013; Hörner, Takahashi, and Vieille 2015). However, in many applications, agents
interact only once.

In this paper, we study a new approach for solving this problem. We construct a self-
enforcing mechanism that relies on neither legal enforcement nor a long-term relationship.
Instead, our mechanism utilizes a smart contract (Szabo 1994) deployed on a blockchain
(Nakamoto 2008) as a commitment device for preventing agents from reneging. The con-
struction of self-enforcing mechanisms with the use of smart contracts is a new mechanism
design problem raised by the emergence of blockchains. We design a smart contract named
“digital court,” which substitutes a court in the traditional mechanism paradigm. As in
the traditional paradigm, in our framework, all the communications and actions are taken
outside of the blockchain (hence, the whole mechanism need not be written as a smart con-
tract). After all the relevant actions are taken, each agent “self-judges” whether each of the
other parties followed the agreement, by sending a message to the digital court. Based on
agents’ reports, a digital court identifies those who reneged and punishes them by executing
some automated monetary transfers, leaving no opportunity for reneging again. Foreseeing
the punishment in the future, agents find it unprofitable to make any deviation that leaves
verifiable evidence. Just like legal enforcement can be used for any purpose, enforcement by
digital courts can be used for implementing any agreement.

This paper regards the smart contract as a contract written as a computer protocol
deployed on a blockchain. A blockchain is a distributed ledger that is managed in a decen-
tralized manner, without relying on trust in any party. Cryptocurrency is one of the leading
applications of the blockchain technology — by managing the data about the ownership
(account balance) of “currencies,” a blockchain performs as a peer-to-peer electronic cash
system. In contrast to fiat money, cryptocurrencies are programmable. Many blockchains
allow users to write a computer protocol that directly accesses the account balance and
makes automated monetary (cryptocurrency) transfers. Such computer protocols are called
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smart contracts. After the first blockchain, Bitcoin, was created, a number of blockchains
that can be used as a platform for smart contracts have been launched. Thus, as of 2020,
parties are already able to use smart contracts as a tool of mechanism design.

Smart contracts automatically execute contingent transfers in accordance with the pre-
agreed protocol and inputs made afterward. As smart contracts can directly update the
account balance managed by the blockchain, using a smart contract, users can make a com-
mitment for contingent payments. Taking advantage of this commitment power, untrusted
parties may reach a viable agreement without relying on legal enforcement. Previous studies
have already proposed various smart contracts for specific applications, e.g., auctions (Galal
and Youssef 2019), bilateral trading (Asgaonkar and Krishnamachari 2019), sharing apps
(Bogner, Chanson, and Meeuw 2016), and boardroom voting (McCorry, Shahandashti, and
Hao 2017). In contrast to them, we study self-enforcement of general abstract mechanisms
by designing a smart contract that performs as a court.

Although a smart contract is a useful commitment device for enforcing monetary trans-
fers, it has a number of limitations. Cryptographers, computer scientists, and engineers are
actively debating possible technical solutions. However, our approach does not rely on them
— we only use the technology that is already incorporated into popular blockchain plat-
forms (such as Ethereum) as of 2020. Hence, all the mechanisms proposed in this paper can
be used in the real world right now. Instead of using new cryptographic technologies, our
digital-court approach overcomes the following fundamental limitations of smart contracts
through mechanism design.

Privacy If we use a public blockchain as a platform, the smart contract deployed on it
becomes publicly observable.1 Hence, if parties write a smart contract intended for a specific
purpose, the public can infer the detail of the agreement the parties reached. The versatility
of our approach helps parties to keep privacy. Since digital courts can be used for any
purpose, the agreement enforced by a digital court cannot be inferred from the structure of
the uploaded digital court.

Low Transaction Cost The users of smart contracts must pay commissions to record-
keepers every time they input new information and make an operation. As computations

1This is because public blockchains allow anyone to work as a record-keeper. Since record-keepers have
to check the validity of transaction requests, they must be able to observe the detail of transactions. The
cryptography literature has proposed various technical solutions for maintaining privacy (e.g., Zyskind,
Nathan, and Pentland 2015; Kosba, Miller, Shi, Wen, and Papamanthou 2016), but our approach does not
rely on them.
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executed in a smart contract are expensive, the users want to minimize the use of it.2 Our
approach indeed minimizes commissions as we use a smart contract only for punishments.
Our result also articulates that punishments are the only part of transactions that must be
executed on blockchains.

Payment Only Smart contracts can only enforce transfers of digital assets whose own-
ership is managed by the relevant blockchain. If all allocations executed by the agreement
were completed in a blockchain, parties could make a mechanism self-enforcing by simply
writing the mechanism as a smart contract and deploying it on a blockchain. However, as of
2020, besides money (cryptocurrencies), only a very limited type of digital assets is managed
by blockchains. Hence, the commitment power of smart contracts is one-sided — although
smart contracts can enforce payments, they cannot directly enforce actions that are taken in
exchange for payments. This limitation does not matter to our approach. To deter reneging,
it suffices to fine deviators.3

Finite Message Spaces The size of the data that blockchains can store and process is
limited. Hence, a smart contract must not involve infinite message spaces. This techno-
logical limitation naturally rules out the use of unbounded mechanisms (e.g., the canonical
mechanism of Maskin 1999), which is often criticized in the literature (e.g., Jackson 1992;
Abreu and Matsushima 1992). Our construction of digital courts does not take advantage
of the unboundedness of the message space.

In our framework, a smart contract is used only for ex post punishments. As such,
all communications and actions but judgment are taken place outside of the blockchain.
The input of the outside data (who should be punished?) to the smart contract cannot be
automated; thus, participants of the mechanism must report the deviators to the digital court

2Antonopoulos and Wood (2018) state that “any computation executed in a smart contract is very ex-
pensive and so should be kept as minimal as possible. It is therefore important to identify which aspects of
the application need a trusted and decentralized execution platform” (Chapter 12). Our results indicate that
the aspect that needs a trusted execution platform is punishment for deviators. Huberman, Leshno, and
Moallemi (2017, 2019); Budish (2018) provide theoretical foundations for the expensiveness of transactions
in the long run.

3Hypothetically, the ownership of other financial assets, such as fiat money, stocks, and bonds, can also
be managed by blockchains. However, as of 2020, there is no blockchain with which parties can write a smart
contract that enforces transfers of such assets. Some emerging companies issue digital assets for fundraising,
where the ownership of the digital assets is managed by blockchains (initial coin offering). Compared with
the market of cryptocurrencies, the market size of other digital assets is negligibly small.

Note also that, many (non-digital) assets and services cannot be managed by blockchains even in the
future. For example, in a housing market, while the ownership of a house can (hypothetically) be managed
by a blockchain, the blockchain cannot directly enforce transfers of possession as it cannot evacuate the
residents. Hence, the limited scope problem will continue to exist even after blockchains are widely adopted.
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by themselves. As we assume no party is trusted, agents may input incorrect information. If
so, the digital court misunderstands the state of the world and cannot execute the intended
transfers. This problem is called the oracle problem in the blockchain literature. This is the
fundamental design question of the digital court.

The oracle problem should be resolved by incentivizing agents to make correct inputs.
As in the traditional paradigm, we assume that reneges are verifiable (otherwise, deviations
cannot be prevented even when legal enforcement is available). Hence, (i) agents have
complete (verified) information about who is “guilty” (i.e., violated the agreement), and (ii)
the mechanism should incentivize agents to input truthful information, ideally in the unique
equilibrium. This is a new class of implementation problems (see Jackson 2001; Maskin and
Sjöström 2002 for comprehensive surveys).4

In this paper, we tackle three design questions of the digital court: (i) partial imple-
mentation, (ii) unique implementation, and (iii) the false charge problem. The false charge
problem is a new design problem that has not appeared in the traditional paradigm, whose
detail is explained later.

Partial implementation of blockchain enforcement requires to punish agents who violated
the agreement in one equilibrium. As we assume that agents are indifferent between whether
the other agents are punished or not, this goal is trivial. The digital court decides whether to
punish each agent, based on the other agents’ message profile. If the sentence is independent
of the defendant’s message, and each agent obtains no reward from inputting information,
then each agent has a weak incentive to make a truthful report to the digital court. Hence,
in an equilibrium, the digital court correctly punishes guilty agents. Note also that, even if
we strengthen the equilibrium concept to the strict Nash equilibrium, the goal is still trivial
— the digital court can incentivize agents to decide the sentence unanimously just by giving
penalties when reports are inconsistent (Design 1).

Partial implementation is unsatisfactory. Since agents do not directly care about whether
the judgment is fair or not, there are many equilibria in which the digital court misjudges.
Ideally, we want to punish guilty agents correctly in any equilibria. However, since we assume
that agents’ payoffs from the digital court are independent of the guiltiness of the defendant,
it is impossible to exclude unwanted equilibria.

To break down the impossibility result, we consider a way to take advantage of the behav-
ioral motivation that is influenced by the guiltiness of defendants. Specifically, we consider
intrinsic preferences for conveying honest and dishonest messages to the digital court. We

4In the blockchain literature, various systems that correctly input the truthful information about the mar-
ket has been invented (Peterson, Krug, Zoltu, Williams, and Alexander 2015; Ellis, Juels, and Nazarov 2017;
Adler, Berryhill, Veneris, Poulos, Veira, and Kastania 2018). However, no mechanism for helping a small
group of agents to input the truthful information about the local information was established in the literature.
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keep assuming that most agents are rational and purely motivated by material payoffs. How-
ever, we also assume that some agents may be honest and have a psychological incentive
to make a truthful report, and other agents may be adversarial and have an incentive to
make an untruthful report. Since we focus on an environment in which agents interact only
once (i.e., there is no long-term relationship), each agent does not know whether each of the
other agents is truly honest or not. Hence, each agent has a belief about the other agents’
behavioral types. We show that, when agents believe that honest agents are more likely to
exist than adversarial agents, there is a mechanism that incentivizes all rational agents to
vote for correct judgment.

The design of the proposed digital court (Design 2) is simple. The sentence is determined
by a simple majority rule. In addition, similar to Design 1, jurors are punished when their
reports are mutually inconsistent. However, Design 2 allows agents to vote not only for
0 (acquittal) or 1 (conviction) but also any fractional value between 0 and 1. Thanks to
this feature, when honest agents are more likely to exist than adversarial agents, all the
rational agents are incentivized to report a “slightly more honest” message than the other
rational agents because rational agents also want to match their message with honest agents’.
Accordingly, from the perspective of rational agents, the only reporting strategy that survives
iterated elimination of strictly dominated strategies is voting for a correct decision (unique
implementation). This result is pervasive in the following sense. First, the fraction of
honest agents can be arbitrarily small. Second, the mechanism need not identify who is
honest. Design 2 performs well as long as agents believe that some of the other agents (may
probabilistically) prefer to be honest. Third, the structure of psychological cost functions
can be general. Fourth, Design 2 performs well even if there are adversarial agents, as long
as their ex ante fraction is smaller than honest agents’.

If we assume that agents have no intrinsic preference, Design 2 fails to implement correct
judgment, just as Design 1 fails to do so. However, once we assume the existence of a small
fraction of behavioral agents, the equilibria of Design 2 shrinks drastically. Consequently,
we can achieve unique implementation of enforcement. How a mechanism leverages the
possibility of the existence of behavioral agents is a new criterion for evaluating mechanisms,
and our Design 2 makes a difference here.5

If adversarial agents are absent, Design 2 makes correct judgment with probability one.
5The equilibrium analysis of the game under the presence of (a small fraction of) behavioral agents

and incomplete information itself has a long history. For example, Kreps, Milgrom, Roberts, and Wilson
(1982) study how the existence of behavioral agents changes the equilibria of finitely repeated games, and
Postlewaite and Vives (1987); Carlsson and Van Damme (1993); Morris and Shin (1998) study how incomplete
information shrinks the set of equilibria. These previous studies focus on the analysis of given games. In
contrast, our focus is on the design of mechanisms that fully take advantage of the existence of behavioral
agents and incomplete information.
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However, under the presence of adversarial agents, Design 2 may make a false charge — if we
accidentally have many adversarial agents, the digital court would misunderstand the state
of the world. In other words, Design 2 sometimes punishes innocent agents accidentally.
Ideally, the mechanism should not fine innocent agents even if some agents prefer to make
incorrect inputs. To achieve this goal, we design Design 3, which is a hybrid of Design 1
and Design 2 that incentivizes adversarial agents to tell the truth. Design 3 imposes a large
fine when agents’ reports are mutually inconsistent, because its payment needs to offset
adversarial agents’ intrinsic incentives to tell a lie. To avoid fining agents who input truthful
information into the digital court, we further elaborate a mechanism. Our final design of the
digital court, Design 4, only imposes an arbitrarily small fine to agents who made a truthful
input, on the equilibrium path.

On one hand, our results indicate that smart contracts may improve social welfare. Law-
suits and compulsory execution are often costly and time-consuming. If a victim hesitates
to pay the judicial cost, lawsuits may become an empty threat and cannot prevent agents
from reneging. Even in such situations, punishments by smart contracts could be a credible
threat as its cost for enforcement could be significantly lower than that of legal enforcement.
Hence, smart contracts may resolve many real-world hold-up problems.

On the other hand, our findings indicate that blockchains and smart contracts may jeop-
ardize the real-world economy more seriously than the previous studies has expected. Unlike
real courts, digital courts do not examine the legality of the agreement to be enforced. There-
fore, smart contracts enable parties to write viable contracts intended for illegal purposes.
For example, Tirole (1992) discusses that side payments can be enforced through a long-term
relationship, and therefore, parties can implement an illegal agreement without relying on
legal enforcement if agents interact repeatedly. However, our result indicates that under
the presence of the smart-contract platform, parties can write a self-enforcing illegal con-
tract, even if their relationship is one-shot. Furthermore, if parties follow our digital-court
approach, regulators cannot detect the detail of the agreement by monitoring the smart
contract uploaded to a blockchain.6

The rest of this paper is organized as follows. Section 2 describes the framework of our de-
centralized mechanism design problem. Section 3 explains legal enforcement as a benchmark
method. Section 4 models smart contracts and digital courts, and explains how they work
as a new way to enforce agreements. Section 5 considers partial implementation. Section 6
introduces behavioral aspects of agents’ preferences and considers unique implementation.

6Although Cong and He (2019) suggest that blockchains may encourage greater collusion, they focus on
tacit collusion because “explicit form of collusion using smart contracts is easy to detect and can be forbidden
by antitrust law” (Cong and He 2019, pp.1729). However, if a cartel follows our approach, the agreement
enforced by a digital court cannot be detected from its appearance.
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Section 7 presents two applications, auctions and bidding ring, and argues about regulatory
policies to prevent the use of digital court for illegal purposes. Section 8 considers the false
charge problem. Section 9 concludes.

2 Decentralized Mechanisms

We first introduce a framework of the decentralized mechanism design problem, where the
trusted mechanism designer is absent. There are n ≥ 2 agents I = {1, 2, . . . , n} that attempt
to implement a joint decision. Agents are willing to implement an agreement α : Ξ → A

that maps a message profile ξ ∈ Ξ to an action profile α(ξ) ∈ A :=
∏

i∈I Ai. Formally, the
game proceeds as follows.

Step 1: A type profile θ := (θi)i∈I ∈ Θ :=
∏

i∈I Θi is realized. Every agent i observes her
type, θi ∈ Θi.

Step 2: To figure out the state, θ, every agent i publicly announces a message, ξi ∈ Ξi,
simultaneously. The announced message profile ξ := (ξi)i∈I ∈ Ξ :=

∏
i∈I Ξi becomes public

information among agents. Since all agents observe ξ, the agreed action profile α(ξ) becomes
common knowledge at this point.

Step 3: Each agent takes an action âi ∈ Ai, simultaneously (simultaneousness is for sim-
plicity and can easily be relaxed). Each agent verifies the action she took to the other agents.
Hence, the set of guilty agents (deviators), D(â, ξ) := {i ∈ I : âi 6= αi(ξ)}, becomes common
knowledge and verifiable information. We denote agent i’s payoff that is finalized in Step 3
by ui : A×Θ→ R. We assume that ui is bounded, quasi-linear, and risk-neutral.

For notational convenience, we represent the set of deviators by a n-dimensional vector,
ω := (ωi)i∈I ∈ Ω := {0, 1}n. For each i, ωi denotes agent i’s guiltiness: ωi = 0 if “agent i is
innocent,” i.e., i /∈ D(â, ξ), and ωi = 1 if “agent i is guilty,” i.e., i ∈ D(â, ξ).

Thus far, all the communications and actions are taken outside of the blockchain. Note
that, if agents are not willing to use legal enforcement, they need not prepare an explicitly-
written contract (or a smart contract) that specifies the agreement to be implemented. See
Section 7 for concrete examples of decentralized mechanisms.

If the game terminates in Step 3, the agreement α is just a recommendation. Hence,
α is implementable only if agents voluntarily follow the recommendation; i.e., α(θ) is a (ex
post) Nash equilibrium of the normal-form game in which each agent i’s utility is specified
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by ui(·, θ) : A → R. This is a very stringent condition. For example, the agreement can
recommend no monetary transfer because no agent is willing to make a payment voluntarily.
This is why mechanisms need enforcement.

To prevent agents from reneging, we want to punish deviations. Let ti ∈ R+ be the fine
imposed on agent i ex post. Since we assume that utility functions are quasi-linear, agent
i’s total payoff is represented in the following form.

Ui(â, θ, ti) = ui(â, θ)− ti.

We discuss how to implement ex post punishment in detail from the next section.
We define

Ti := sup
ξ∈Ξ,θ∈Θ,âi∈Ai

{ui(âi, α−i(ξ), θ)− ui(α(ξ), θ)}+ ε,

where ε > 0 is an arbitrarily small number. When agent i is fined Ti if she is guilty and 0

otherwise, agent i has no incentive for reneging. To enforce the agreement α, it suffices to
find a way to fine Ti as a credible threat.

Note that we made three important assumptions on the actions. First, we assume that
all the actions ai ∈ Ai are taken outside of the blockchain, and therefore, actions cannot be
directly enforced by smart contracts. Note that actions may include transfers of fiat money.

Second, we assume that all the monetary transfers that happen on the equilibrium path
should be specified as a part of actions because we focus on mechanisms that use transfers
in cryptocurrencies only as ex post punishments. This is for keeping privacy: agents do
not want to disclose the detailed information about the agreement α, the reported message
profile ξ, and taken actions â through the smart contract written on a blockchain.

Third, we assume that actions are verifiable. If not, implementation is difficult even when
a court is present. The aim of this paper is to discuss how smart contracts may substitute
the role of courts in the traditional mechanism design paradigm. We exclude moral hazard
problems that are relevant even when legal enforcement is available, by assuming that actions
are verifiable.

Remark 1. In Step 2, agents are required to make public announcements. Once a public
announcement is made, the announced message immediately becomes common knowledge
among agents.7 Hence, once an agent verifies the fact that she followed the agreement, all
agents can immediately understand her innocence. Note that public announcements are
technically easy. Agents can achieve them by uploading messages to a tamper-proof ledger

7Messages need not be disclosed to the outside. To maintain privacy, for example, agents can encrypt all
the public announcements by using a common password.
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(e.g., a version control system such as GitHub or a blockchain itself).8

Remark 2. In Step 2, agents announce messages simultaneously. Even if a trusted mechanism
designer is absent and moves are sequential by nature, agents can use a commitment scheme
to declare messages simultaneously. The commitment scheme is a standard application of
cryptography (see, for example, Goldreich 2007).

3 Benchmark: Legal Enforcement

Traditionally, human society has relied on legal enforcement for discouraging parties from
reneging. The law prohibits agents from violating the contract, and courts enforce agents to
keep the promise by punishing violators. Specifically, agents play the following Step 4 after
Step 3.

Step 4: Agents report (sue) the guiltiness vector ω to a court. The court investigates the
detail of the agreement and decides whether the defendant should be punished. If agent i is
identified to be guilty, she is fined Ti.9

Towards the implementation of the agreement, courts have two important roles. First, a
court must investigate the validity of agents’ claim, and judge whether agents who are claimed
to be guilty should be punished. Recall that the action profile is assumed to be verifiable.
Hence, agents cannot misreport the guiltiness to the court. Therefore, this procedure is
mathematically easy, as long as the court is non-strategic. For Step 4 to be a credible threat,
the court must be trusted in the sense that agents believe that the court will punish guilty
agents properly.

Second, a court must check whether the agreement is legal and help parties to implement
the agreement only when the agreement is made for a good purpose. This is for protecting
society from the threat of illegal activities. Thanks to this function, criminals have not been
able to use a mechanism that relies on legal enforcement.

8Akbarpour and Li (2019) study an auction design problem in which legal enforcement is available but a
trusted mechanism designer is absent. Their environment is crucially different from ours in that they exclude
public announcements by assumption (in their model, only private communications between each agent and
an untrusted mechanism designer are allowed). The middleman problem they study does not appear if public
announcements are available.

9In reality, when the court admits a violation of the contract, the court typically orders the defendant
to pay compensation to the plaintiff. From the mechanism design perspective, both compensation and
fine work as punishments for deterring contract violations. Hence, we do not strictly distinguish these two
terminologies.

10



Even if courts are trusted, legal enforcement is not almighty. First, lawsuits are costly.
The capacity of courts is always limited, and decision making is typically slow. If ex post
punishment becomes an empty threat for these reasons, then deviations cannot be prevented.
Second, under some circumstances, agents may not want to rely on courts. For example,
agents might be concerned about privacy. If they rely on a lawsuit, the relevant information
will be disclosed to the public.

4 Blockchain Enforcement

4.1 Smart Contract

First, we model smart contracts mathematically.

Definition 1 (Smart Contract). A smart contract (M, t̄, γ) is a triple of a message space
M := (Mi)i∈I , a deposit vector t̄ := (t̄i)i∈I ∈ Rn

+, and a transfer rule γ : M →
∏

i∈I(−∞, t̄i],
where the transfer rule γ is weakly budget balanced; i.e.,

∑
i∈I γi(m) ≥ 0 for all m ∈M .

The smart contract initially receives t̄i from agent i as a deposit. When message profile
m is input, the smart contract (re)pays t̄i − γi(m) to agent i. Hence, agent i’s net payment
is γi(m). The rest of the deposit,

∑
i∈I γi(m), is burned. Once a smart contract is deployed

on a blockchain and agents make a deposit, no agent can renege on it.

Here, we define the smart contract as a commitment device for input-contingent pay-
ments. This assumption is realistic. First, a smart contract can directly update the account
balances of participants, and no one can tamper the smart contract. Thus, through a smart
contract, agents can make a commitment to contingent cryptocurrency transfers. Second, as
of 2020, besides cryptocurrencies, there are few digital assets whose ownership is managed
by blockchains. Hence, the smart contract can hardly enforce transfers other than cryp-
tocurrencies. Third, cryptocurrencies are actively traded on the market as a kind of liquid
speculative assets; thus, it is easy to exchange popular cryptocurrencies (such as Bitcoin and
Ethereum) for fiat money.10 Hence, transfers in cryptocurrencies are equivalent to transfers
in fiat money.

Unlike courts, smart contracts cannot force agents to pay a fine unless they agree to do
so ex ante. Hence, before exchanging information about θ but after making an agreement for
the action profile, each agent i needs to deposit t̄i = maxm∈M γi(m) to the smart contract.

10The exchange market of emerging cryptocurrencies is thin. Hence, such cryptocurrencies might be
illiquid and may not be regarded as equivalent to fiat money. This is the reason why we develop a digital
court based on the technology widely adopted by popular blockchains.
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Step 1+: A type profile θ = (θi)i∈I is realized. Every agent i observes her type, θi ∈ Θi.
At this moment, agents deploy a smart contract (M, t̄, γ) on a blockchain. Every agent i
deposits t̄i to the smart contract.

Remark 3. Unless agents can make a deposit, the smart contract cannot enforce cryptocur-
rency transfer. If agents have a severe liquidity constraint, the digital-court approach might
not be available.

There is no change in Step 2 and 3. In Step 4+, agents send the information about the
set of guilty agents, ω (or D(â, ξ)), to the smart contract as a message mi, rather than a
court. The smart contract should identify guilty agents from the input (message profile) and
punish agents who are identified to be guilty.

Step 4+: Every agent i sends a message mi to the smart contract. The smart contract
returns t̄i − γi(m) to agent i. After the repayment, the smart contract is cleared.

Beware that our model involves two different messages. Messages ξ is communication
between agents, that is used for deciding the action profile that the agents agreed to take,
α(ξ). Messages m is an input into the smart contract, (M, t̄, γ). Each agent i’s message
space Mi is explicitly defined in the smart contract, and agent i submits a message mi

as a transaction on the blockchain. Messages m is used for inputting information about
the guiltiness of agents, ω, and based on this message profile, the smart contract executes
automated monetary transfers, γ(m).

Agent i’s resultant payoff is
ui(â, θ)− γi(m).

In Step 4+, the message profile ξ is already reported, and the action profile â is already
taken. Accordingly, they do not directly influence the incentives for messaging. Hence, in
any perfect Bayesian equilibrium, in Step 4+, each agent i chooses a message that minimizes
her fine γi(m); i.e.,

γi(mi,m−i) ≤ γi(m
′
i,m−i) for all m′i ∈Mi. (1)

We say that a message profile m is a Nash equilibrium of a smart contract (M, t̄, γ) if it
satisfies (1) for every i ∈ I. We say that the message profile m is a strict Nash equilibrium
of a smart contract (M, t̄, γ) if (1) is satisfied with strict inequalities for all i ∈ I and
m′i ∈Mi \ {mi}.
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4.2 Digital Court

Although smart contracts can be used for various purposes, we only use it for preventing
agents from violating the agreement, i.e., to take âi 6= αi(ξ). To achieve this goal, it suffices
to focus on the design of a simple class of smart contracts, named digital courts.

Definition 2. A smart contract (M, t̄, γ) is called a digital court if the following conditions
are satisfied.

• For every j ∈ I, Mj :=
∏

i∈IM
i
j , where M i

j ⊆ [0, 1]K for some K ∈ Z+.

• For every j ∈ I, γj can be represented as

γj(m) = Tj · sj(mj
−j) +

∑
i∈I

qij(m
i),

where sj : M j
−j → {0, 1} is called the sentence function for agent j, and qij : M i → R+

is the incentive payment term. Here, M j
−j :=

∏
i 6=jM

j
i and M i :=

∏
k∈IM

i
k.

Note that a digital court never “rewards” agents in the sense that γj(m) ≥ 0 holds for
all j ∈ I and m ∈M .

A digital court comprises n independent trials, indexed by i ∈ I. Each trial i regards
agent i as a defendant and determines whether to convict agent i, and all agents (including
the defendant herself) participate as jurors. Towards each trial i, each agent j ∈ I expresses
her opinion about defendant i’s guiltiness, ωi, by sending a message mi

j ∈ M i
j . The profile

of messages submitted to each trial, mj := (mi
j)i∈I , is the whole message that agent j sends

to the digital court.
Agent i’s sentence function si : M i

−i → {0, 1} decides whether to convict agent i based
on all the other agents’ report for trial i, mi

−i. If agent i is convicted (i.e., si(mi
−i) = 1),

then she is fined Ti. The design objective of the digital court is to convict guilty agents
and acquit innocent agents; i.e., to achieve si(mi

−i) = ωi in an equilibrium. To decide the
sentence, the digital court only looks at the messages sent from agents other than agent i
herself (otherwise, agent i is strongly incentivized to insist on her innocence in trial i).

In this paper, we focus on digital courts whose message space is a subset of a (multi-
dimensional) unit interval. Sending a message closer to 0 means that the juror votes to acquit
the defendant, and sending a message closer to 1 means that the juror votes to convict the
defendant. All the sentence functions we consider in this paper is monotonic in the sense
that the defendant is more likely to be convicted (i.e., si becomes more likely to take 1) if
each juror j ∈ I reports a larger message to trial i.

13



To incentivize each agent to send an intended message, the digital court also involves
an incentive payment term, qij : M i → R+, which is a fine imposed on juror j ∈ I for her
activity in trial i ∈ I. If the message profile sent to trial i is mi, juror j is fined qij(mi). Since
the sentence function sj is independent of agent j’s own message mj

j, agent j’s incentive for
reporting is solely provided by

∑
i∈I q

i
j(m

i). Furthermore, since each incentive payment term
for trial i only takes account of the message profile sent to trial i, to minimize

∑
i∈I q

i
j(m

i),
it suffices to minimize qij(mi) separately, for each i.

5 Partial Implementation

5.1 Weak Incentives

We start from discussing partial implementation of the punishment; i.e., to achieve si(mi
−i) =

ωi in a Nash equilibrium.
This goal is trivial. Let M i

j = {0, 1} for all i, j ∈ I. Each agent j is expected to match
her report with the defendant’s guiltiness, i.e., send mi

j = ωi. If the incentive payment is set
to zero for all message profiles; i.e., qij(mi) = 0 for all mi ∈ M i, then agent j is indifferent
between sending any mi

j ∈ M i
j . Accordingly, telling the truth is one of the best responses.

In a trivial Nash equilibrium, every agent j sends mi
j = ωi. For example, we can decide the

sentence by a majority rule:

si(mi
−i) =


1 if

∑
j 6=i

mi
j >

n− 1

2
,

0 otherwise.
(2)

Then, in an equilibrium, every agent sends mi
j = ωi. Therefore, si(mi

−i) = ωi is also achieved
in a Nash equilibrium.

Note that, since decisions are made unanimously in a Nash equilibrium, we need not use
a simple majority rule as a sentence function.

5.2 Strict Incentives

In many applications, implementations that rely on weak incentives are not trustworthy.
It is desirable to provide strict incentives for taking intended actions. This is not difficult
either. We can incentivize jurors to make a decision unanimously by comparing multiple
jurors’ messages.

Definition 3. Design 1 of the digital court is specified as follows:
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• M i
j := {0, 1} for all i, j ∈ I.

• Defendant i’s sentence function si is a simple majority rule as specified by (2).

• Juror j’s incentive payment term for trial i, qij, is given by

qij(m
i) := η · 1

{
mi
j 6= mi

k for some j, k ∈ I
}
,

where η > 0.

• Agent j’s deposit t̄j is given by

t̄j := Tj + n · η.

If votes for trial i is unanimous, i.e., mi
j = mi

k for all j, k ∈ I, then the digital court
repays η > 0 to every juror j ∈ I. Otherwise, the deposit η is not returned to any agent
j ∈ I, and it is burned instead. Since agent j participates in n different trials as a juror, if
her choice matches the aggregate decision for all trials, then she can be repaid with nη in
total.

Design 1 encourages jurors to agree on the sentence unanimously. In one equilibrium,
jurors match their votes at the correct reporting.

Theorem 1. Design 1 has a strict Nash equilibrium in which every agent makes truth-
ful reporting to the digital court; i.e., every agent j reports mj = ω. In this equilibrium,
si(mi

−i) = ωi for all i ∈ I.

Proof. The incentive payment qij rewards agent j only if her message matches all the other
jurors I \{j}. Hence, for every agent j ∈ I, given that all the other agents k ∈ I \{j} reports
mi
k = ωi, agent j’s unique best response is to report mi

j = ωi. Hence, mj = ω comprises a
strict Nash equilibrium.

6 Unique Implementation

6.1 Impossibility Result

Design 1 implements the agreement as one equilibrium, but it is not unique implementation.
Design 1 indeed has many Nash equilibria. While Design 1 incentivizes jurors to match their
messages, the focal point need not be truthtelling. For example, a strategy profile in which
every agent j ∈ I tells a lie; i.e., mi

j = 1−ωi for all i ∈ I, also constitutes a Nash equilibrium.
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It would be ideal if we could achieve unique implementation of correct judgment. How-
ever, in Step 4+, an action profile â and type profile θ are already finalized. Hence, ui(â, θ) is
constant, and agents’ payoffs are solely determined by monetary transfers through the digital
court. Since agents’ preferences for monetary transfers are independent of types (guiltiness),
unique implementation is impossible.

Fact. For any smart contract (M, t̄, γ), the set of Nash equilibria does not depend on ω.

Proof. Each agent’s payoff function is independent of ω. Hence, the set of Nash equilibria
cannot depend on ω.

Note that, even if we introduce a refined solution concept, such as subgame perfect im-
plementation (Moore and Repullo 1988), Nash implementation with undominated strategies
(Palfrey and Srivastava 1991), and weak iterative dominance (Abreu and Matsushima 1994),
the impossibility results cannot be broken down. Moreover, (not exact but) virtual imple-
mentation (Matsushima 1988; Abreu and Sen 1991; Abreu and Matsushima 1992) is also
impossible. This is because mechanisms that have been developed in the standard imple-
mentation theory literature crucially rely on the assumption that agents’ preferences are
influenced by the state of the world. However, in our problem, the state (guiltiness) does
not change agents’ preferences over monetary transfers.

6.2 Intrinsic Preferences

To break down the impossibility result above, we must leverage behavioral aspects of eco-
nomic agents. Although the mechanism design literature has typically assumed that agents
are purely interested in material payoffs, experimental research has suggested that some
people have intrinsic preferences for honest behaviors (Gneezy 2005; Abeler, Nosenzo, and
Raymond 2019). We assume that, with a small probability, there are honest agents who
prefer to convey truthful information to the digital court. At the same time, we also assume
that some agents might be adversarial and prefer to tell a lie.

Let Bj := {R,H,A} be agent j’s behavioral type space. bj = R means “agent j is rational,”
bj = H means “agent j is honest,” and bj = A means “agent j is adversarial.” From now,
we take account of each behavioral type of agents’ psychological cost from reporting, and we
assume that each agent j minimizes her expected disutility, Γj : M × Ω×Bj → R, which is
the sum of her fine and psychological cost.

First, we consider the following form of psychological costs.
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Assumption 1. For every i, j ∈ I, M i
j ⊆ [0, 1]. For every agent j ∈ I, with probability

1− δH − δA, agent j is rational (bj = R) and wants to minimize

Γj(m,ω,R) := γj(m).

With probability δH ≥ 0, agent j is honest (bj = H) and wants to minimize

Γj(m,ω,H) := γj(m) +
∑
i∈I

[
ωi · c1

H(mi
j) + (1− ωi) · c0

H(mi
j)
]
,

where (i) both c1
H : [0, 1] → R+ and c0

H : [0, 1] → R+ are strictly convex and twice differ-
entiable, (ii) c1

H is strictly decreasing and c1
H(1) = 0, and (iii) c0

H is strictly increasing and
c0
H(0) = 0. With probability δA ≥ 0, agent j is adversarial (bj = A) and wants to minimize:

Γj(m,ω,A) := γj(m) +
∑
i∈I

[
ωi · c1

A(mi
j) + (1− ωi) · c0

A(mi
j)
]
,

where (i) both c1
A : [0, 1] → R+ and c0

A : [0, 1] → R+ are strictly convex and twice differ-
entiable, (ii) c1

A is strictly increasing and c1
A(0) = 0, and (iii) c0

A is strictly decreasing and
c0
A(1) = 0.

The realization for each agent is independent, and each agent cannot observe whether
other agent is honest or not.

Later, we will consider a mechanism (Design 2) that allows agents to cast a fractional
vote, mi

j ∈ [0, 1]. Thus, the domain of the psychological cost functions is also extended from
{0, 1} to [0, 1].

Note that, Assumption 1 does not assume the (ex post) existence of behavioral agents.
When δH and δA are small, it is likely that all parties are rational and want to minimize
the fine. Note also that we assume that agents’ behavioral types are not observable from
the outside, and therefore, the mechanism cannot use a behavioral agent’s opinion as a
reference.11

For example, Assumption 1 is satisfied if the psychological cost functions are quadratic:
c1
H(mi

j) = c0
A(mi

j) = (1−mi
j)

2 and c0
H(mi

j) = c1
A(mi

j) = (mi
j)

2. Such a case is investigated in
more detail in Subsection 6.6.

The first term, γj(m), is the total fine imposed on agent j, and rational agents are
interested only in it. If agent j is either honest or adversarial, she also takes account of

11Matsushima (2008) investigates unique implementation of social choice functions in an environment
where there exists a player who has intrinsic preference for honesty and whose opinions can be treated as a
reference.
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psychological costs. For example, if defendant i is guilty (i.e., ωi = 1), an honest juror j
incurs a psychological cost c1

H(mi
j) by reporting mi

j. The psychological cost is zero if agent
j tells the truth (mi

j = 1 leads to c1
H(1) = 0) and becomes larger as the message becomes

less truthful (i.e., c1
H(mi

j) is strictly decreasing). The payoff structure of adversarial agents
is similar, but an adversarial agent incurs a larger psychological cost as she sends a more
truthful message.

As we have introduced behavioral types and incomplete information into the model, we
should also define Bayesian Nash equilibrium of digital courts. Let σj : Ω × Bj → Mj be
agent j’s reporting strategy, and σ := (σj)j∈I be the reporting strategy profile.

Definition 4. We say that a reporting strategy profile σ is a Bayesian Nash equilibrium of
a smart contract (M, t̄, γ) if it satisfies

E
[
Γj

(
σj(ω, bj), σ−j(ω, b̃−j), bj

)]
≤ E

[
Γj

(
m′j, σ−j(ω, b̃−j), bj

)]
for all j ∈ I, ω ∈ Ω, bj ∈ Bj.

6.3 Design 1 Still Fails

Assumption 1 does not lead a näıve design of the digital court to an ideal outcome. As an
optimistic scenario, let us assume that there is no adversarial agent who intrinsically prefers
to tell a lie (i.e., δA = 0) but there is a large fraction of honest agents (i.e., δH � 0).

In the best case, all honest agents would be motivated by their intrinsic preferences and
report mi

j = ωi to the digital court. The existence of honest agents encourages rational
agents to tell the truth because rational agents want to match their messages with the other
agents’. However, even when we assume Assumption 1 with δH > 0 and δA = 0, Design 1
may still have multiple equilibria with a wide range of δH . If δH < 1/2 and a rational agent
believes that all the other rational agents make an untruthful report, a decision is more likely
to be made unanimously if the agent also report untruthfully. Hence, in an equilibrium, all
rational agents may still tell a lie. The equilibrium becomes unique if δH > 1/2. However,
in many applications, we expect that most of economic agents are rational, and therefore,
δH > 1/2 is a too stringent assumption.

6.4 Unique Equilibrium

We construct an alternative digital court, Design 2, that has a unique equilibrium under a
generic range of parameters. Design 2 is defined as follows:

Definition 5. Design 2 of the digital court is specified as follows:

18



• M i
j = [0, 1] for all i, j ∈ I.

• Defendant i’s sentence function si is given by

si(mi
−i) :=


1 if

∑
j 6=i

1

{
mi
j >

1

2

}
>
n− 1

2
,

0 otherwise.
(3)

• Juror j’s incentive payment term for trial i, qij, is given by

qij(m
i) :=

η

n− 1
·
∑
k 6=j

(mi
j −mi

k)
2.

where η > 0.

• Agent j’s deposit t̄j is given by

t̄j := Tj + η · n.

Unlike Design 1, Design 2 allows jurors to cast a fractional vote. For each trial i, agent
j ∈ I reports a fractional value mi

j ∈ [0, 1], where mi
j = 0 means “agent i is surely innocent”

and mi
j = 1 means “agent i is surely guilty.”

Remark 4. To be precise, a continuous message space (like [0, 1]) cannot be used in smart
contracts because the data size of inputs must be finite. Hence, the message space of Design 2
must be approximated by a fine-grained discrete message space.

Similar to Design 1, the sentence function of Design 2, (3), is based on a majority rule.
Here, messaging mi

j > 1/2 means voting for “guilty,” and mi
j ≤ 1/2 means voting for

“innocent.” The digital court counts the number of votes for “guilty” and imposes a fine to
the defendant if a majority of jurors made such votes. We say that juror j is voting for a
correct decision if either (i) mi

j > 1/2 and ωi = 1 or (ii) mi
j < 1/2 and ωi = 0. If a defendant

i is convicted, she loses Ti.
Each juror j’s fine for trial i is calculated by comparing j’s message mi

j and another juror
k’s message mi

k, one by one. Each incentive payment term is specified by (mi
j −mi

k)
2. This

term incentivizes agent j to report her best guess of the opponent k’s message — to minimize
the fine term, agent j should choose mi

j = mi
k, and then agent j is not fined. Conversely,

the fine is maximized when agent j and k completely disagree, i.e., either (i) mi
j = 0 and

mi
k = 1 or (ii) mi

j = 1 and mi
k = 0. In such cases, (mi

j −mi
k)

2 = 1.
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Parallel to Design 1, Design 2 incentivizes rational agents to match their messages with
the others. However, in contrast to Design 1, Design 2 allows agents to report a fractional
value. Since behavioral agents also have intrinsic preferences, they have an incentive to make
their reports slightly closer to their bliss point. Since rational agents also expect this, as
we proceed the iterated elimination of strictly dominated strategies, the set of rationalizable
strategies gradually shrinks. Eventually, we reach a unique strategy profile.

Theorem 2. Suppose Assumption 1 and either δH > 0 or δA > 0. Then, Design 2 is
dominance solvable and has a unique Bayesian Nash equilibrium.

Proof. Since each trial is independent and the mechanism is symmetric, we only consider an
innocent agent i’s trial (ωi = 0). We prove the uniqueness of the equilibrium by performing
iterated strict dominance. Let MR(0) = MH(0) = MA(0) = [0, 1] and MR(r),MH(r),MA(r)

be the set of undominated strategies in r-th round from the perspective of rational, honest,
and adversarial agents, respectively.

By choosing mi
j, a rational agent j minimizes qij(mi). An honest agent j minimizes

qij(m
i) + c0

H(mi
j). An adversarial agent j minimizes qij(mi) + c0

A(mi
j). Since the psychological

cost functions are independent of the other agents’ reports, the strategic complementarity of
this game is solely provided by the incentive payment term, qij(mi). Clearly, the fine is im-
posed according to a submodular function, and therefore, the game implied by Design 2 is a
supermodular game. Hence, to proceed the iterated elimination of strictly dominated strate-
gies, it suffices to consider the behaviors of maxMR(r), maxMH(r), maxMA(r), minMR(r),
minMH(r), minMA(r). They are given by

maxMR(r + 1) = arg min
mi

j∈MR(r)

η · Q̄(mi
j; r),

maxMH(r + 1) = arg min
mi

j∈MH(r)

{
η · Q̄(mi

j; r) + c0
H(mi

j)
}
,

maxMA(r + 1) = arg min
mi

j∈MA(r)

{
η · Q̄(mi

j; r) + c0
A(mi

j)
}
,

minMR(r + 1) = arg min
mi

j∈MR(r)

η ·Q(mi
j; r),

minMH(r + 1) = arg min
mi

j∈MH(r)

{
η ·Q(mi

j; r) + c0
H(mi

j)
}
,

minMA(r + 1) = arg min
mi

j∈MA(r)

{
η ·Q(mi

j; r) + c0
A(mi

j)
}
,
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where

Q̄(mi
j; r) = (1− δH − δA)

(
mi
j −maxMR(r)

)2

+ δH
(
mi
j −maxMH(r)

)2
+ δA

(
mi
j −maxMA(r)

)2
,

Q(mi
j; r) = (1− δH − δA)

(
mi
j −minMR(r)

)2

+ δH
(
mi
j −minMH(r)

)2
+ δA

(
mi
j −minMA(r)

)2
.

Since the set of messages that survive iterated strict dominance is monotonic, its maxi-
mum and minimum value, maxMR(r),minMR(r), etc., are convergent sequences. Therefore,
if M∗

R,M
∗
H ,M

∗
A are the limit of either maxMR(r), maxMH(r), maxMA(r) or minMR(r),

minMH(r), minMA(r), then M∗
R, M∗

H , M∗
A must satisfy

M∗
R = arg min

mi
j∈[0,1]

η ·Q∗(mi
j),

M∗
H = arg min

mi
j∈[0,1]

{
η ·Q∗(mi

j) + c0
H(mi

j)
}
,

M∗
A = arg min

mi
j∈[0,1]

{
η ·Q∗(mi

j) + c0
A(mi

j)
}
,

where

Q∗(mi
j) = (1− δH − δA)

(
mi
j −M∗

R

)2
+ δH

(
mi
j −M∗

H

)2
+ δA

(
mi
j −M∗

A

)2
.

Solving the optimization problems, we have

M∗
R =

δH
δH + δA

M∗
H +

δA
δH + δA

M∗
A, (4)

M∗
R = M∗

H +
1

2η

(
c0
H

)′
(M∗

H), (5)

M∗
R = M∗

A +
1

2η

(
c0
A

)′
(M∗

A). (6)

Note that δH + δA > 0 because we assume either δH > 0 or δA > 0. Equations (5) and
(6) regard M∗

R as a function of M∗
H and M∗

A, respectively. Since (c0
H)′ and (c0

A)′ are strictly
increasing, the whole functions are also strictly increasing, and therefore, we can take an
inverse function. If we regard M∗

H and M∗
A as functions of M∗

R, then it follows from the
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inverse function theorem that

(M∗
H)′ (M∗

R) =

[
1 +

1

2η

(
c0
H

)′′
(M∗

H (M∗
R))

]−1

,

(M∗
A)′ (M∗

R) =

[
1 +

1

2η

(
c0
A

)′′
(M∗

A (M∗
R))

]−1

.

Since (c0
H)
′′ and (c0

H)
′′ are positive, 0 < (M∗

H)′ (M∗
R) < 1 and 0 < (M∗

A)′ (M∗
R) < 1 holds for

all M∗
R ∈ [0, 1]. Hence, there exists unique M∗

R ∈ [0, 1] that satisfies the fixed point indicated
by (4); i.e.,

M∗
R =

δH
δH + δA

M∗
H(M∗

R) +
δA

δH + δA
M∗

A(M∗
R).

Accordingly, iterated strict dominance leads us to a unique Bayesian Nash equilibrium.

If we assume that all agents are rational and purely interested in material payoffs, then
Design 2 has many equilibria, just as Design 1 does. However, once we assume the existence
of behavioral agents, the equilibria under these two digital courts are drastically different.
While Design 1 remains to have many equilibria under a wide range of parameters, Design 2
always has a unique Bayesian Nash equilibrium as long as behavioral agents exist with a
positive probability.

6.5 Unique Implementation of the Judgment

Theorem 2 assures that as long as there is a small chance to have behavioral agents, Design 2
has a unique Bayesian Nash equilibrium. However, Theorem 2 remains silent as to the
sentence Design 2 is likely to give. Indeed, the messages submitted in the unique equilibrium
are difficult to characterize, as they not only depend on the parameter values of δH and δA

but also the functional form of c0
H , c1

H , c0
A, and c1

A.
Although characterization of equilibria with general parameters is difficult, it is relatively

easy to characterize the equilibrium messages when the scale of incentive payments is small.
As long as psychological cost functions are strictly monotonic, at the limit of η → 0, all
behavioral agents ignore material payoffs and minimize their psychological costs — all honest
agents tell the truth and all adversarial agents tell a lie. Hence, rational agents can infer that
δH fraction of agents report ωi and δA fraction of agents report 1−ωi. Using this fact, we can
derive the equilibrium messages of rational agents in a closed form, as a function of ωi, δH
and δA. The following theorem indicates that, regardless of the shape of psychological cost
functions, Design 2 with small η can induce desirable voting of rational agents if δH > δA.

Theorem 3. Suppose Assumption 1 and either δH > 0 or δA > 0. Then, in the limit of η →
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0, the following reporting strategy profile constitutes a unique Bayesian Nash equilibrium:

σij(ω,H) = ωi,

σij(ω,A) = 1− ωi,

σij(ω,R) = ωi ·
δH

δH + δA
+ (1− ωi) ·

δA
δH + δA

.

Hence, rational agents vote for a correct decision if δH > δA.

Proof. Again, we focus on trial i and the case in which defendant i is innocent. Since the
unique Bayesian Nash equilibrium of Design 2 is characterized by (4), (5), and (6), it suffices
to consider the behavior of M∗

R, M∗
H , and M∗

A in the limit of η → 0. Since (c0
H)′ > 0 and

(c0
A)′ < 0 in (0, 1), in the limit of η → 0, M∗

H → 0 and M∗
A → 1 must hold. Therefore, (4)

implies M∗
R = δA/(δH + δA), as desired.

If η is large, the messages sent by rational agents depend on the shape of psychological
cost functions. For example, even if δH is large and δA is small, if adversarial agents are
extremely stubborn and incurs a large psychological cost if they compromise a little bit,
honest agents may give up and make less truthful reports so as to increase their material
payoffs. Hence, unless we consider the limit of η → 0, the shape of cost functions, c1

H , c0
H ,

c1
A, and c0

A, crucially influence the equilibrium messages. Once we assume η → 0, the shape
of cost functions no longer matters. (See also Subsection 6.6.)

In many applications, we assume that most agents are rational. Hence, we want to make
rational agents to vote for a correct decision. In Design 2 with η → 0, this condition is
satisfied if and only if honest agents are more likely to exist than adversarial agents; i.e.,
δH > δA. In such a case, Design 2 is able to give a correct sentence with a large probability.

If δH > δA is satisfied, the sentence matches the guiltiness if and only if the number of
rational and honest agents is larger than the number of adversarial agents. Such an event
happens with the following probability.

p∗ :=

b(n−1)/2c∑
k=0

(
n− 1

k

)
δkA(1− δA)(n−1)−k.

If we have either (i) δA ≈ 0 or (ii) large n, then p∗ is close to 1, while it is not exactly equal
to 1 as long as δA > 0.

Conversely, if we are more likely to have adversarial agents than honest agents (i.e.,
δA > δH), then Design 2 fails to punish guilty agents — in the unique equilibrium, the digital
court acquits guilty agents with a large probability. Intuitively, this is because rational agents
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cannot believe in honesty of the other agents, and therefore, the expected incentive payment
is larger if they tell a lie. Accordingly, Design 2 can be used for enforcement of the agreement
only if participants widely believe that honest behaviors are more likely to occur in Step 4+.

6.6 Example: Quadratic Psychological Cost

With general psychological cost functions, we can only characterize the equilibrium outcome
in the limit of η → 0. On the other hand, if we assume a specific functional form, we can
characterize the equilibrium messages for general η. In this subsection, we assume that all
psychological cost functions are quadratic and exhibit the equilibrium messages of rational,
honest, and adversarial agents.

Theorem 4. Suppose Assumption 1, either δH > 0, and δA > 0, and the following functional
forms:

c1
H(mi

j) = λH ·
(
1−mi

j

)2
, (7)

c0
H(mi

j) = λH ·
(
mi
j

)2
, (8)

c1
A(mi

j) = λA ·
(
mi
j

)2
, (9)

c0
A(mi

j) = λA ·
(
1−mi

j

)2
, (10)

where λH , λA > 0 represents the preference intensity of honest and adversarial agents, re-
spectively. Then, the following reporting strategy profile σ constitutes the unique Bayesian
Nash equilibrium: For every i, j ∈ I and every ω ∈ Ω,

σij(ω,R) =


δHλH (η + λA)

δHλH (η + λA) + δAλA (η + λH)
if ωi = 1,

δAλA (η + λH)

δHλH (η + λA) + δAλA (η + λH)
if ωi = 0,

σij(ω,H) =


η

η + λH
· δHλH (η + λA)

δHλH (η + λA) + δAλA (η + λH)
+

λH
η + λH

if ωi = 1,

η

η + λH
· δAλA (η + λH)

δHλH (η + λA) + δAλA (η + λH)
if ωi = 0,
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σij(ω,A) =


η

η + λA
· δHλH (η + λA)

δHλH (η + λA) + δAλA (η + λH)
if ωi = 1,

η

η + λA
· δAλA (η + λH)

δHλH (η + λA) + δAλA (η + λH)
+

λA
η + λA

if ωi = 0.

Proof. Again, we focus on trial i and the case in which defendant i is innocent. We substitute
(7), (8), (9), and (10) into (4), (5), and (6) and solve the equation system to obtain the unique
equilibrium message profile, which are shown in Theorem 4.

Rational agents vote for a correct decision if and only if

δHλH(η + λA) > δAλA(η + λH) (11)

If there exists η with which (11) is satisfied, we can induce correct judgment with probability
p∗.

Since (11) is linear in η, to check the existence of η that satisfies (11), it suffices to
consider two cases: (i) η → 0 and (ii) η →∞. The former case is considered in Theorem 2,
and in such a case, (11) becomes equivalent to δH > δA.

As η → ∞, (11) converges to δHλH > δAλA. Here, whether Design 2 can induce voting
for a correct decision depends not only the relative population of honest agents δH , δA, but
also the preference intensity, λH , λA. This is because the preference intensity influences
the extent to which behavioral agents stick to their bliss points. Even when there is only
a small fraction of honest agents, if they stick to truthful reporting, adversarial agents will
compromise and report a message closer to the truth. Accordingly, the equilibrium messages
become closer to the truthful one.

Note that, in the limit of η →∞, the equilibrium messages reported by each behavioral
type converge to the same one. We have

σij(ω,R), σij(ω,H), σij(ω,A)→


δHλH

δHλH + δAλA
if ωi = 1,

δAλA
δHλH + δAλA

if ωi = 0,

as η → ∞. This is because as η increases, intrinsic preferences become less important for
minimization of behavioral agents’ intrinsic preferences. Accordingly, when δHλH > δAλH is
satisfied, by increasing the scale of incentive payments (η), we can make adversarial agents to
vote for a correct judgment. In this case, the decision is made unanimously with probability
one, as opposed to the case of η → 0.

25



However, we may need an extremely large η to achieve unanimity. To simplify calculation,
let us focus on the case of λ := λH = λA. In such a case, δHλH > δAλH reduces to δH > δA,
and adversarial agents vote for a correct decision if and only if

η

η + λ
· δH
δH + δA

>
1

2
,

or equivalently,
η >

δH + δA
δH − δA

· λ.

Accordingly, the scale of incentive payments, η, should be always larger than the scale of
psychological cost, λ. Further more, when δH ≈ δA, η becomes extremely large.

A large scale of payments is not desirable because (i) agents’ worst-case loss (which
happens off the equilibrium path) becomes large, and (ii) agents must make a large deposit
into the digital court in Step 1+; thus the limited liability problem becomes severer. In this
sense, Design 2 is not suitable to lead agents to unanimity, even if it is possible under some
parameter values.

In Section 8, we consider an alternative design that also incentivizes agents to decide the
sentence unanimously. Unlike in the case of Design 2 with large η, the scale of payments
need not be larger than the scale of psychological cost by much.

7 Applications and Social Impacts

7.1 Auctions

This subsection demonstrates how untrusted sellers and buyers may run an auction as a self-
enforcing decentralized mechanism using Design 2 as a digital court enforcing the contract.

For simplicity, we consider a second-price auction for a single indivisible good. The good
is not digital (its ownership is not managed by a blockchain), and therefore, smart contracts
cannot directly handle its ownership. There are three agents: agent 0 is a seller, and agent
1 and 2 are buyers. The seller’s valuation for the auctioned good is assumed to be public
and fixed to θ0. This θ0 is also a reservation price of the auction. Each buyer i has a private
type θi ∈ [0, θ̄], which represents buyer i’s valuation for the auctioned good. Each buyer i
expresses her valuation θi to the seller by sending a bid ξi ∈ [0, θ̄], and the buyer who made
a higher bid will win. For simplicity, we ignore the case of ties. Then, the buyer will pays
the loser’s bid or the reservation price to the seller.

Initially, these three agents interact and make an agreement α. In this application, α
specifies the rule of the auction. The seller 0’s action space is A0 := {0, 1, 2}, where a0
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indicates the recipient of the good (a0 = 0 means the seller keeps it). Each buyer i ∈ {0, 1}’s
action space is Ai = [0, θ̄], where ai represents the amount of money transferred from buyer
i to the seller. Specifically, α is given by

α0(ξ) =


0 if max{θ0, ξ1, ξ2} = θ0,

1 if max{θ0, ξ1, ξ2} = ξ1,

2 if max{θ0, ξ1, ξ2} = ξ2.

α1(ξ) =

max{θ0, ξ2} if max{θ0, ξ1, ξ2} = ξ1,

0 otherwise.

α2(ξ) =

max{θ0, ξ1} if max{θ0, ξ1, ξ2} = ξ2,

0 otherwise.

Then, an agent (typically the seller) deploys Design 2 of the digital court on a blockchain.
The seller deposits t̄0 = θ0 + 3η, and each buyer deposits t̄i = θ̄ + 3η to it. After that, each
buyer i simultaneously announces her bid ξi. At this point, all agents become aware of
the outcome of the auction. Note that bidding need not be processed on a blockchain. In
particular, if agents do not want to disclose the information about bidding to the public, they
should process the bidding step privately, without using a blockchain-based smart contract.

Once agents agree on the auction outcome, they execute it. The seller delivers the object
in accordance with α0(ξ), and each buyer makes a payment in accordance with αi(ξ). Of
course, each agent can renege on the agreement — the seller can keep holding the auctioned
good (choose â0 = 0), and the buyers can refuse to make a payment (choose âi = 0). Hence,
agents cannot run an auction without using some enforcement.

After every agent takes an action âi, she verifies her action to all the other agents. By
comparing â and α(ξ), all agents figure out who violated the agreement. Then, agents
simultaneously submit a message mi to the digital court. The digital court extracts γi(m)

from agent i’s deposit and repays t̄i − γi(m) to agent i.
Seller 0’s resultant payoff is

â1 + â2 − θ0 · 1 {â0 = 0} − γ0(m).

Buyer i ∈ {1, 2}’s resultant payoff is

θi · 1 {â0 = i} − âi − γi(m).
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In the unique Bayesian Nash equilibrium, γi specified by Definition 5 identifies the set
of guilty agents and fines (slightly more than) the maximum possible again from deviation.
Accordingly, in a perfect Bayesian equilibrium, all agents i ∈ {0, 1, 2} takes the agreed action,
αi(ξ).

7.2 Bidding Ring

Parties can also use the digital court for an illegal purpose. For example, parties can use the
digital court to form a strong cartel, in which the cartel members can make transfer payments
(McAfee and McMillan 1992). Transfers within a cartel are often prohibited by competition
by law; thus, legal enforcement is not available for profit reallocation. Therefore, thus far,
repeated interaction among cartel members has been necessary to incentivize (i) the winner
to share the profit with the losers, and (ii) the losers to lower the bid so as to reduce the
price paid by the winner. However, using a digital court as a commitment device, parties
can form a strong cartel even when they interact only once.

In this subsection, we demonstrate that bidders can extract full surplus from a first-price
auction with common values. Note that first-price auctions are considered to be more robust
against collusion than the other auctions, such as second-price auctions, etc.12 There are
two bidders, I := {1, 2}, whose value of the auctioned good is θ̄ ∈ (0, 1]. The value is
common knowledge among agents. The seller is not modeled as a strategic agents, but holds
a first-price auction. The reservation price of the auction is zero, and a tie is broken equally
at random. In a competitive environment, in the unique Bayesian Nash equilibrium, both
bidders bid θ̄ and the good is sold at the price of θ̄; thus, the seller extracts full surplus.

Each bidder i’s action ai is a pair of (i) her bidding decision in the first-price auction,
di ∈ [0, 1] and (ii) the monetary payment to the other party, pi ∈ [0, 1]. Since agents have
no private information, they need not exchange messages to decide the action profile. The
agreement specifies that each bidder i (i) submits di = 0 to the first-price auction, and (ii)
transfers pi = θ̄/2 to the loser if she wins the good (this happens with probability a half if
both agents bid zero).

Whenever a bidder wins the object, she is supposed to share the profit with the loser.
Thus, a bidder cannot increase her profit just by increasing her bid, di. The only profitable
deviation is to refuse to make a payment to the loser. Here, the maximum gain from a
deviation is θ̄/2; thus, if each bidder initially deposits θ̄/2 + ε to the digital court, then the
digital court can offset incentives for deviation. Here, the price of the good is zero; thus,
bidders steal all the surplus.

12See Chapter 11 of Krishna (2009), for example.
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Such a scheme is applicable for not only first-price auctions but also many other classes
of auctions. Furthermore, bidders can extract full surplus by developing a similar agreement
even in the case of private values (see Section 6 of McAfee and McMillan 1992). Although the
seller can mitigate this problem by introducing a random reservation price and anonymizing
the identity of buyers, typically bidders can still increase their joint profits by forming a
strong cartel.

7.3 Regulation

Smart contracts enable parties to use self-enforcing mechanisms, which are aimed for either
a legitimate purpose (e.g., auctions) or illegal purpose (e.g., bidding rings). This feature is
contrasting to traditional mechanism design with legal enforcement — since courts always
check the legality of the contract to be enforced, parties cannot leverage legal enforcement
for running mechanisms intended for illegal objectives. Ideally, a regulator wants to permit
a legitimate use of smart contracts but prohibit an illegal use. However, practical implemen-
tation of such regulation seems a challenging problem.

Public blockchains disclose all the information recorded there to any party. Accordingly,
smart contracts deployed on a public blockchain is also disclosed to the public. By observing
the digital court, a regulator can figure out that some parties are attempting to enforce a
certain agreement.

If the regulator can also find that the parties who involved in the contract are not allowed
to make a privacy-preserving binding agreement (e.g., parties are construction companies
competing in procurement), then it is enough to expose the fact that the parties uploaded
a digital court on a blockchain. To implement this regulation, the regulator must be able
to identify each party’s pseudonym (account number) in the blockchain system. Although
the identity of users can be inferred from the history of transactions, whether real-world
regulators can always detect the pseudonym of each party or not is ambiguous.

The problem is severer if parties are allowed to make privacy-preserving agreements that
are intended for legitimate purposes. In such a case, detecting the pseudonym is not sufficient
to expose a crime — the regulator must verify that the agreement enforced by the digital
court is illegal. However, since the information about the agreement (α) need not be written
on the smart contract, the regulator cannot detect whether the agreement is illegal or not
just by checking the information that appears on the blockchain.

Hence, if contracting itself is legal, then the regulator must investigate the contract
details by searching for evidence in actions taken in the real world, rather than analyzing the
transaction data recorded in the blockchain. Seeking evidence for a contract with blockchain
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enforcement is more difficult than the case of illegal activities based on repeated interactions.
In the case of repeated interactions, the regulator can investigate the time-series data of
agents’ actions (e.g., the history of bidding in a series of auctions). Here, the regulator can
apply a statistical analysis to expose the pattern of illegal activities. In contrast, blockchain
enforcement does not need a long-term relationship, and therefore, may be used for enforcing
a one-shot agreement. If the interaction is one-shot, the regulator may not be able to detect
illegal activities statistically.

Furthermore, some illegal agreements leave no decisive evidence in the real world. To
incentivize agents to take collusive actions, it often suffices to promise that winners of the
competition distribute some profits to losers. Such transfers need not be taken explicitly
— if the winner and loser have a business relationship, the winner can transfer a profit by
giving a discount in other deal, for example. Although the outside parties cannot distinguish
such transfers from a legitimate dealing, the winner and loser can secretly agree to interpret
the discount as a reward for taking collusive actions. If the incentive for taking collusive
actions and making a transfer from winners to losers is provided by a digital court, there is
no decisive evidence for a regulator to expose the collusive agreement.

There is some hope that the digital-court approach is inconvenient for criminal activities.
A digital court takes advantage of the chance to have honest agents, who truthfully report the
state to the smart contract. If the psychological motivation for “honesty” comes from moral
consciousness, it might be awoken only when the mechanism is used for a good purpose.
If criminal parties have a sense of guilt and have a fear and doubt about the other agents’
messaging (i.e., suspect that the other agents might be adversarial with a relatively high
probability), then unique implementation might not be achievable. The regulator might also
be able to take advantage of this nature so as to disturb illegal self-enforcing mechanisms.

8 False Charge Problem

8.1 Preventing False Charges in Sentences

When the realized number of adversarial jurors is large, Design 2 may “convict” innocent
defendants because adversarial jurors vote for an incorrect decision. Although the proba-
bility that an innocent defendant is convicted is small (as long as the ex ante fraction of
adversarial agents is small and the total number of agents is large), such an event occurs
with a positive probability. This is a false charge. This section considers an alternative
design of a mechanism that never convicts innocent defendants in the unique equilibrium.
We construct a mechanism that encourages adversarial agents to tell the truth.
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Design 3 is a hybrid of Design 1 and 2 — Design 3 asks agents to submit both a continuous
message mi

j(1) ∈ [0, 1] and a binary message mi
j(2) ∈ {0, 1}, simultaneously. As each agent

submits multiple messages to each trial, Assumption 1 is not directly applicable. Here, we
introduce a slightly different assumption of intrinsic preferences.

Assumption 2. For every agent i, j ∈ I, M i
j = M i

j(1) ×M i
j(2), where M i

j(1) ⊆ [0, 1] and
M i

j(2) ⊆ {0, 1}. For every agent j ∈ I, with probability 1 − δH − δA, agent j is rational
(bj = R) and wants to minimize

Γj(m,ω,R) := γj(m).

With probability δH > 0, agent j is honest (bj = H) and wants to minimize the following
function:

Γj(m,ω,H)

:= γj(m) +
∑
i∈I

{
ωi · c1

H(mi
j(1)) + (1− ωi) · c0

H(mi
j(1)) + λH · 1

{
mi
j(2) 6= ωi

}}
,

where (i) both c1
H : [0, 1] → R+ and c0

H : [0, 1] → R+ are strictly convex and twice dif-
ferentiable, (ii) c1

H is strictly decreasing and c1
H(1) = 0, (iii) c0

H is strictly increasing and
c0
H(0) = 0, and (iv) λH > 0. With probability δA ≥ 0, agent j is adversarial (bj = A) and

wants to minimize the following function:

Γj(m,ω,A)

:= γj(m) +
∑
i∈I

{
ωi · c1

A(mi
j(1)) + (1− ωi) · c0

A(mi
j(1)) + λA · 1

{
mi
j(2) = ωi

}}
,

where (i) both c1
A : [0, 1] → R+ and c0

A : [0, 1] → R+ are strictly convex and twice differen-
tiable, (ii) c1

A is strictly increasing and c1
A(1) = 0, (iii) c0

A is strictly decreasing and c0
A(0) = 0,

and (iv) λA > 0.
The realization for each agent is independent, and each agent cannot observe whether

other agent is honest or not.

Parallel to Assumption 1, honest agents incur a larger psychological cost as they submit
less truthful messages, and adversarial agents incur a larger psychological cost as they submit
more truthful messages. The psychological cost for the first message, mi

j(1), is specified in
the same manner as Assumption 1. Since the second message space is binary, without loss
of generality, we can assume that each behavioral agent incurs a psychological cost of λH or
λA when she reports a dispreferred message.
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Design 3 is defined as follows.

Definition 6. Design 3 of the digital court is specified as follows:

• M i
j := M i

j(1)×M i
j(2), where M i

j(1) := [0, 1] and M i
j(2) := {0, 1} for all i, j ∈ I.

• Defendant i’s sentence function si is given by

si(mi
−i) :=


1 if

∑
j 6=i

mi
j(2) >

n− 1

2
,

0 otherwise.

• Juror j’s incentive payment term for trial i, qij, is given by

qij(m
i) :=

η(1)

n− 1
·
∑
k 6=j

(
mi
j −mi

k

)2
+ η(2) · 1

{
mi
j(2) 6= µi−j

(
mi
−j(1)

)}
,

where η(1), η(2) > 0 and

µi−j(m
i
−j(1)) :=


1 if

∑
k 6=j

1

{
mi
k(1) >

1

2

}
>
n− 1

2
,

0 otherwise.
(12)

• Agent j’s deposit t̄j is given by

t̄j := Tj + η(1) + η(2).

As in Design 2, the message space of the first message mi
j(1) is [0, 1]. The structure of

the payment rule for jurors is also the same: Design 3 compares mi
j(1) and mi

k(1) for every
j, k, and fines [η(1)/(n − 1)] · (mi

j(1) − mi
k(1))2. Except this term, mi

j(1) does not affect
agent j’s payment. Hence, agent j’s incentive for reporting mi

j(1) in Design 3 is the same as
in Design 2. Accordingly, as shown in Theorem 2, if we have δH > δA and η → 0, then all
rational and honest agents vote for a correct decision. From now, we focus on such a case.

If η is small, adversarial agents ignore material payoffs and always tell a lie. Hence, the
first message profile is typically not unanimous. If a digital court decides the sentence using
mi(1), with a positive probability, it misjudges (as Design 2 does). To avoid this, Design 3
require jurors to make one more step of peer prediction, and the second message is used for
deciding the sentence. Specifically, Design 3 compares juror j’s second message, mi

j(2), with
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the majority opinion of the first messages of all the other agents, µi−j(mi
−j(1)). If these two

do not coincide, Design 3 fines juror j by η(2).
Note that, the functional form of the majority opinion function of Design 3 is the same

as the sentence function of Design 2. Hence, if δH > δA and η is small, then the probability
that the majority opinion µij(m

i
−j(1)) is correct is also p∗.

Under Design 3 with appropriate choice of η(1) and η(2), in the unique Bayesian Nash
equilibrium, the decision is made unanimously for every trial. Hence, the digital court never
misidentifies the set of guilty agents.

Theorem 5. Suppose Assumption 2 and δH > δA. Then, for any c1
H , c

0
H , c

1
A, c

0
A, λH , λA, there

exist η(1) and η(2) with which Design 3 satisfies the following conditions:

1. Design 3 becomes dominance solvable and has a unique Bayesian Nash equilibrium.

2. In the unique Bayesian Nash equilibrium, the judgment is correctly made; i.e., si(mi
−i) =

ωi for all i ∈ I. Furthermore, the decision is made unanimously in the sense that every
rational, honest, and adversarial agent j ∈ I reports mi

j(2) = ωi for all i ∈ I.

Proof. Again, we focus on trial i and assume that defendant i is innocent; i.e., ωi = 0. Parallel
to Theorem 2, in the limit of η(1) → 0, all honest agents report mi

j(1) = 0, all adversarial
agents report mi

j(1) = 0, and all rational agents report mi
j = δH/(δH + δA) < 1/2. Hence, if

we take a sufficiently small η(1), then (i) rational and honest agents report mi
j < 1/2, and

(ii) adversarial agents report mi
j > 1/2. We pick such η(1). Then, the probability that the

majority opinion µi−j is correct is p∗.
Now, we consider adversarial agent j’s incentive for reporting the second message. If an

adversarial juror j tells a lie, her expected fine is

p∗ · η(2). (13)

On the other hand, the total of her expected fine and psychological cost is

(1− p∗) · η(2) + λA. (14)

If we take η(2) > λA/(2p
∗−1), then (13) becomes larger than (14). Accordingly, all adversar-

ial agents send a truthful second message to the digital court in the unique equilibrium. We
can also show that all the rational and honest agents tell the truth in a similar manner.

The first message is for constructing a reference point. Just like Design 2, Design 3 allows
agents to make fractional voting, and therefore, (under a certain assumption) agents vote
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for a correct decision with a large probability. Design 3 does not use it as the final decision
but require agents to make one more report. The second message is used for deciding the
sentence. Just like Design 1, this message is binary; thus, if an agent tells a lie, then
the message becomes very distant from the majority opinion. This feature increases the
effectiveness of the punishment.

Note that Design 3 needs a relatively larger scale of the incentive payments compared
with the case of Design 2 with η → 0. Since η(2) should be larger than λA/(2p∗−1), Design 3
requires at least Tj+λA/(2p∗−1) as a deposit, and each juror indeed loses η(2) > λA/(2p

∗−1)

when mi
j(2) does not coincide with µi−j(m

i
−j(1)). This is because we need to incentivize

adversarial agents to tell the truth in order to make correct judgment with probability one
— the incentive payment terms must offset adversarial agents’ psychological payoff from
telling a lie. However, the required payment scale is typically much smaller than the case of
Design 2 with large η (demonstrated in Subsection 6.6).

8.2 Preventing False Charges in Jurors’ Incentive Payments

Design 3 still has a weak point. In Design 3, although all the adversarial agents make truthful
reporting for the second message, they do not tell the truth for the first message. Hence, the
majority opinion of the first messages is incorrect with probability 1− p∗. Accordingly, even
if an agent correctly reports mi

j = ωi, she will be fined η(2) > λA/(2p
∗− 1) with probability

1 − p∗, due to inconsistency between her second message and the majority opinion of the
first messages. This subsection extends Design 3 to decrease the incentive payment imposed
on agents who vote for a correct decision.

As our assumption on intrinsic preferences crucially depend on the specification of the
mechanism, we first define the mechanism, Design 4. Design 4 is similar to Design 3, but it
requires many (Z ≥ 3) messages simultaneously.

Definition 7. Design 4 of the digital court is specified as follows:

• M i
j :=

∏Z
z=1M

i
j(z), where M i

j(1) := [0, 1] and M i
j(z) := {0, 1} for all z ≥ 2, for all

i, j ∈ I.

• To decide the sentence for defendant i, Design 4 initially draws z from {2, 3, . . . , Z}
equally at random. Then, the sentence for defendant i is determined by a simple
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majority rule with respect to mi
−i(z):

Siz(m
i
−i(z)) :=


1 if

∑
j 6=i

mi
j(z) >

n− 1

2
,

0 otherwise.

The probability that Siz is chosen as the resultant sentence function is

Prob
(
si(mi

−i) = Siz(m
i
−i(z))

)
=

1

Z − 1

for all z = 2, 3, . . . , Z.

• Juror j’s incentive payment term for trial i, qij, is given by

qij(m
i) :=

η(1)

n− 1
·
∑
k 6=j

(mi
j(1)−mi

k(1))2

+ η(2) · 1
{
mi
j(2) 6= µi−j(m

i
−j(1))

}
+

Z∑
z=3

η(z) · 1
{
mi
j(z) 6= ζ i−j(m

i
−j(z − 1))

}
,

where µi−j is given by (12) and ζ i−j is given by

ζ i−j(m
i
−j(z)) :=


1 if

∑
k 6=j

mi
k(z) >

n− 1

2
,

0 otherwise.

• Agent j’s deposit t̄j is given by

t̄j := Tj +
Z∑
z=1

η(z).

Design 4 is a random mechanism. Each agent submits Z ≥ 3 messages, and Design 4
chooses z from 2 to Z uniformly at random. The message profile corresponds to the realized z,
mi
−i(z), is used for deciding the sentence for agent i. Note that, Design 4 involves randomness

only for this part, and agents’ incentive payments, qij, are deterministic. Hence, as for
derivation of the Bayesian Nash equilibrium, we can ignore the randomness. (We formulate
Design 4 as a random mechanism for justifying the specification of the psychological cost in
Assumption 3.)
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In Design 4, the first message, mi
j(1) is very special in the sense that (i) its space is an

interval [0, 1], while all the other message spaces are binary, {0, 1}, and (ii) the first message
is not used for deciding the sentence. All the other messages have a similar role — they are
binary, and all the agents are expected to match their messages mi

j(z) with the guiltiness of
the defendant, ωi. Moreover, all these messages are used for deciding the sentence with an
equal probability.

Reflecting this design intention of Design 4, we specify intrinsic preferences of honest and
adversarial agents in the following manner.

Assumption 3. For every i, j ∈ I, M i
j :=

∏Z
z=1M

i
j(z), where Z ≥ 3. M i

j(1) ⊆ [0, 1] and
M i

j(z) ⊆ {0, 1} for all z ≥ 2. For every agent j ∈ I, with probability 1− δH − δA, agent j is
rational (bj = R) and wants to minimize

Γj(m,ω,R) := γj(m).

With probability δH ≥ 0, agent j is honest (bj = H) and wants to minimize the following
function:

Γj(m,ω,H)

:= γj(m) +
∑
i∈I

{
ωi · c1

H(mi
j(1)) + (1− ωi) · c0

H(mi
j(1)) +

λH
Z − 1

·
Z∑
z=2

1
{
mi
j(z) 6= ωi

}}
,

where (i) both c1
H : [0, 1] → R+ and c0

H : [0, 1] → R+ are strictly convex and twice dif-
ferentiable, (ii) c1

H is strictly decreasing and c1
H(1) = 0, (iii) c0

H is strictly increasing and
c0
H(0) = 0, and (iv) λH > 0.

With probability δA ≥ 0, agent j is adversarial (bj = A) and wants to minimize the
following function:

Γj(m,ω,A)

:= γj(m) +
∑
i∈I

{
ωi · c1

A(mi
j(1)) + (1− ωi) · c0

A(mi
j(1)) +

λA
Z − 1

·
Z∑
z=2

1
{
mi
j(z) = ωi

}}
,

where (i) both c1
A : [0, 1] → R+ and c0

A : [0, 1] → R+ are strictly convex and twice differen-
tiable, (ii) c1

A is strictly increasing and c1
A(0) = 0, (iii) c0

A is strictly decreasing and c0
A(1) = 0,

and (iv) λA > 0.
The realization for each agent is independent, and each agent cannot observe whether

other agent is honest or not.
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Similar to Assumption 2, Assumption 3 introduces c1
H , c

0
H , c

1
A, c

0
A as a psychological cost

function for the first message. Assumption 3 is a generalization of Assumption 2 in the sense
that if we take Z = 2, then Assumption 3 becomes identical to Assumption 2.

In Assumption 3, for every time a behavioral agent sends a dispreferred message, she
incurs a (expected) psychological cost of λH/(Z − 1) or λA/(Z − 1). The following is an
interpretation of this specification. These Z−1 message profiles are selected for deciding the
sentence with an equal probability, 1/(Z − 1). Importantly, when a message is not selected,
it has no influence on the sentence to be made. As a message becomes a “white lie” in such
a case, it is natural to assume that each agent may incur a psychological cost only if the
relevant message is used for deciding the sentence. We assume that an agent incurs an ex
post psychological cost of λH or λA when her dispreferred message happens to be used to
decide the sentence. Then her expected psychological cost of sending a dispreferred message
for one time should be equal to λH/(Z − 1) or λA/(Z − 1).

Now, let us consider juror j’s incentive of reporting. Using the first messagemi
j(1) ∈ [0, 1],

Design 4 constructs a reference point, µi−j(mi
−j(1)). Then, each juror j predicts the majority

opinion of the other jurors by sending a binary message, mi
j(2) ∈ {0, 1}. If mi

j(2) and
µi−j(m

i
−j(1)) do not match, juror j is fined η(2). Thus far, the construction of incentive

payments in Design 4 is identical to that in Design 3.
Design 4 has an additional payment rule. By reporting z-th message, mi

j(z), each juror
j repeatedly predicts the majority opinion of the other agents with respect to the preceding
message profile, ξi−j(mi

−j(z−1)). Each juror does this for Z−2 times by reporting mi
j(z) for

z = 3, 4, . . . , Z. The same as the second message, each agent’s message space for the third
message or later is binary. If a juror fails to predict it with z-th report, she will be fined
η(z).

The majority opinion of later messages (the second messages of after) is a more accurate
predictor than the majority opinion of the first message. The majority opinion of the first
message is incorrect with probability 1− p∗. Hence, if we impose agents a fine based on the
comparison against the first message profile, we would cause a false charge. On the other
hand, since mi

j(2), . . . ,mi
j(Z) are chosen from a binary message space, and all agents submit

an exactly correct message with probability one, if we punish agents based on comparison
against later message profiles, then we no longer have a problem of the false charge. The only
“false charge” imposed by Design 4 is from the comparison between mi

j(2) and µi−j(mi
−j(1)).

As we increase the number of messages, Z, we can make the false charge incurred by this
comparison smaller.

Just like Design 3, Design 4 correctly identifies the set of guilty agents with probability
one. Furthermore, the false charge paid by honest and rational jurors vanishes as Z →∞.
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Theorem 6. Suppose Assumption 2 and δH > δA. Then, for any c1
H , c0

H , c1
A, c0

A, λH , λA,
and ε > 0 there exists (η(z))Zz=1 with which Design 4 satisfies the following conditions:

1. Design 4 is dominance solvable and has a unique Bayesian Nash equilibrium.

2. In the unique Bayesian Nash equilibrium, the judgment is correctly made; i.e., si(mi
−i) =

ωi for all i ∈ I happens with probability one. Furthermore, the decision is made unan-
imously in the sense that every rational, honest, and adversarial agent j ∈ I reports
mi
j(z) = ωi for all i ∈ I and z = 2, . . . , Z with probability one.

3. In the unique Bayesian Nash equilibrium, the total fine imposed on an innocent agent
is always smaller than

n · λA
(2p∗ − 1)(Z − 1)

+ ε. (15)

4. Agent j’s deposit t̄j is smaller than

Tj + n · λA ·
(

1 +
2(p∗ + 1)

(2p∗ − 1)(Z − 1)

)
+ ε. (16)

Proof. We focus on trial i. We first assume that defendant i is innocent; i.e., ωi = 0. Parallel
to Theorem 5, if we take a small η(1), then µi−j(m

i
−j(1)) = ωi happens with probability p∗.

We first consider agent j’s incentive for sending her second message, mi
j(2). If she tells

a lie, the sum of her expected fine from the second message is

p∗ · η(2). (17)

If she tells the truth, the total of her expected fine and psychological cost is

(1− p∗) · η(2) +
λA

Z − 1
. (18)

(18) is smaller than (17) if
η(2) >

λA
(2p∗ − 1)(Z − 1)

. (19)

Therefore, if we take η(2) that satisfies (19) for all agent j, then in any equilibrium, all
agents tell the truth for the second message.

Suppose that all agents report mi
j(z
′−1) = 0 in any equilibrium. If so, ζ i−j(mi

−j(z
′−1)) =

0 also holds with probability one in any equilibrium. We consider her incentive for reporting
z′-th message. If she tells a lie, the sum of her expected fine from z′-th message is

η(z′). (20)
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On the other hand, if she tells the truth, then she is not fined, and her psychological cost is

λA
Z − 1

. (21)

(21) is smaller than (20) if
η(z′) >

λA
Z − 1

.

Therefore, if we take η(z′) that satisfies (19), then in any equilibrium, all agents tell the
truth for z′-th message.

By mathematical induction, we can prove that, if ωi = 0, in the unique equilibrium, all
the adversarial jurors tell the truth: mi

j(2) = mi
j(3) = · · · = mi

j(Z) = ωi. We can prove the
case of ωi = 1 in a similar manner.

Hence, taking η(2), . . . , η(Z) such that

η(2) >
λA

(2p∗ − 1)(Z − 1)
, (22)

η(z′) >
λA

Z − 1
, (23)

for all z′ = 3, . . . , Z, we can make all adversarial agents to tell the truth in any equilibria.
As rational and honest agents have stronger incentives to tell the truth, they also have an

incentive to tell the truth. Accordingly, Design 4 has a unique Bayesian Nash equilibrium,
and all agents report mi

j(z) = ωi for all z = 2, . . . , Z in the unique Bayesian Nash equilibrium.
In the unique Bayesian Nash equilibrium, an innocent agent may pay η(1) + η(2) for

trial j because all agents reporting after z = 2 always perfectly coincide. As η(1) can be
arbitrarily small, and the infimum of η(2) is given by the right hand side of (22). Hence, we
can take (η(z))Zz=1 with which η(1) + η(2) is smaller than (15).

Furthermore, the total deposit required for Design 4 is t̄j = Tj +
∑Z

z=1 η(z), and its
infimum amount is obtained by summing up (22) and (23) for all z′ = 3, 4, . . . , Z. Hence,
we can take (η(z))Zz=1 with which Tj +

∑Z
z=1 η(z) is smaller than (16), as desired.

In the limit of Z → ∞, the infimum amount of the total fine imposed on an innocent
agent, (15), converges to zero. Hence, Design 4 approximately resolves the false charge
problem if we take a large Z. On the other hand, the infimum amount of each agent j’s
deposit, (16), converges to Tj + nλA. Accordingly, even in the limit of Z →∞, the deposit
does not diverge.
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9 Concluding Remarks

We study the design of self-enforcing mechanisms, using a smart contract as a commitment
device. We design digital courts that replace the role of courts in the traditional mechanism
design paradigm. Digital courts incentivize agents to report those who violated the agreement
truthfully and impose fines to them. The punishment deters agents from reneging on the
agreement, just as a court does in the traditional paradigm. Hence, any agreement that
is implementable with legal enforcement can also be implemented with the presence of a
platform for smart contracts.

To make correct judgment, the digital court has to incentivize agents to input truthful
information (oracle problem). This paper studies unique implementation of the correct
judgment as a mechanism design problem. As smart contracts can only execute monetary
transfers, unique implementation is impossible if all agents are purely interested in material
payoffs. Hence, we develop a mechanism that has a unique Bayesian Nash equilibrium if
a positive (small) fraction of agents prefer to tell the truth or tell a lie (Design 2). Design
2 successfully incentivizes rational agents to vote for a correct decision if honest agents are
more likely to exist than rational agents. Furthermore, the possibility of a false charge can
be prevented by requiring agents to send multiple messages (Design 3, Design 4). Note that,
the assumptions leveraged in Design 2, 3, and 4 can be generalized further. For example, as
long as the psychological cost functions satisfy the assumptions on its shape (monotonicity
and strict convexity), we can prove a similar possibility theorem even if the cost functions
vary across agents.

Digital courts can be used for implementing any agreement. The detail of the agreement
is not leaked even if a digital court is uploaded to a public blockchain. As our digital-court
approach only utilizes the tools already practically implemented as of 2020, parties can form
an enforcing agreement using our approach right now. If smart contracts and digital courts
are used for a legitimate purpose, they would improve the social welfare by extending the
possibility of mechanism design.

This result also implies that blockchain disruption might be more serious than the litera-
ture has expected. Before the creation of cryptocurrencies, it has been difficult for criminals
to make a viable agreement because they could not rely on legal enforcement. The emer-
gence of blockchains enabled parties (including criminals) to run self-enforcing mechanisms.
Even if the regulator monitors the blockchain, the regulator cannot detect whether a digital
court is used for a legitimate or unlawful purpose. Again, since the digital-court approach is
already available, criminals might be utilizing a similar scheme to enforce illegal agreements
even now. To protect society from this threat, the regulatory authority should carefully
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consider a way to prevent parties from abusing smart contracts. The design of desirable
regulations is an interesting future research topic.

Our digital-court approach crucially relies on the behavioral assumptions. Whether and
how digital courts are used in the real world crucially depends on agents’ preferences for
honesty. Agents’ intrinsic preferences must be influenced by various factors, such as the in-
struction of the digital court, the detail of the agreement (e.g., the legality of the agreement),
and the attribute of party members. Whether agents find that the digital-court approach is
useful and prefer it over the traditional legal enforcement would depend on contexts, and we
can test the contexts in which the digital-court approach performs well through economic
experiments and empirical analyses. However, these analyses are beyond the scope of this
paper.
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