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Abstract

Given two pairs of expected utility functions, we formalize the notion that one

expected utility function is more risk-averse than the other in the first pair to a

greater extent than in the second pair. We do so by assuming that the utility

functions are twice continuously differentiable and satisfy the Inada condition, and,

in each of the two pairs, using the function that transforms the derivatives of one

expected utility function to the derivatives of the other, rather than the function

that transforms one expected utility function to the other. This definition allows

us to interpret the quantitative results on the ambiguity aversion coefficients of the

smooth ambiguity model of Klibanoff, Marinacci, and Mukerji (2005) in some cases

not covered by the more-ambiguity-averse-than relation that they conceived.

JEL Classification Codes: C38, D81, G11.

Keywords: Expected utility functions, risk aversion, ambiguity aversion, smooth

ambiguity model.

1 Introduction

An expected utility function (also known as a Bernoulli utility function) is said to be

more risk-averse than another if the former is a concave transformation of the latter.

The purpose of this paper is, when two pairs of expected utility functions are given, to

formalize the idea that one expected utility function is more risk-averse than the other

in the first pair to a greater extent than in the second pair. In symbols, if v1 and u1

constitute the first pair and v2 and u2 constitute the second pair, then we wish to give

a rigorous and sufficiently general definition to the statement that v1 is more risk-averse

than u1 to a greater extent than v2 is more risk-averse than u2. In other words, based on

∗I thank Shoko Negishi, Jonathan Newton, and, especially, Sujoy Mukerji for helpful comments. This
research is funded by the Open Research Area (ORA) for the Social Sciences “Ambiguity in Dynamic
Environments.”
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the standard more-risk-averse-than relation, we introduce a new binary relation over the

differences in risk aversion between two expected utility functions.

The expected utility function v1 is more risk-averse than u1, and v2 is more risk-averse

than u2, if and only if there are two concave functions ϕ1 and ϕ2 such that v1 = ϕ1 ◦ u1

and v2 = ϕ2 ◦u2. The most natural approach to formalize that statement that v1 is more

risk-averse than u1 to a greater extent than v2 is more risk-averse than u2, is to require

ϕ1 to be more concave than ϕ2. But this statement makes sense only if ϕ1 and ϕ2 have

the same domain, that is, u1 and u2 have the same range. In many applications, this

assumption is violated.

Our approach is, instead, to assume that the utility functions are twice continuously

differentiable and satisfy the Inada condition, and use the function that transforms the

derivatives of one utility expected function to the derivatives of the other expected utility

function. In symbols, we define two functions ψ1 : R++ → R++ and ψ2 : R++ → R++

by v′1 = ψ1 ◦ u′1 and v′2 = ψ2 ◦ u′2 and compare ψ1 and ψ2. These functions ψ1 and ψ2

have the same domain because the utility functions u1 and u2 are assumed to satisfy the

Inada condition, and in our definition we rank ψ1 and ψ2 in terms of their elasticities

rather than the curvature (which is used when comparing ϕ1 and ϕ2). We will also give

necessary and sufficient conditions of this definition in terms of choice behavior between

a random and a deterministic consumption plans.

This study is motivated by the smooth ambiguity model of Klibanoff, Marinacci, and

Mukerji (2005, hereafter KMM). Their utility functions are defined in the form of nested

expected utilities, in which the inner expected utilities, and the associated conditional

certainty equivalents, are taken for a utility function u conditional on probability measures

on the state space, and the outer expected utility is taken for a utility function v over the

conditional certainty equivalents with respect to what they termed as the second-order

belief. The decision maker is ambiguity-averse if the outer utility function v is more risk-

averse than the inner utility function u. Theorem 2 of KMM proved that the curvature

(concavity) of the tranformation function ϕ satisfying v = ϕ ◦ u measures his ambiguity

aversion, much in the same way as the Arrow-Pratt measure of absolute risk aversion

measures risk aversion.

As emphasized by KMM themselves, a caveat on their more-ambiguity-averse-than

relation is in order. The theorem implies that whenever one utility function is more

ambiguity-averse than another, they share essentially the same inner utility function u.

But it is a common practice in empirical studies to estimate or calibrate the curvature

of the transformation function ϕ (which is the KMM measure of ambiguity aversion) or

of the outer utility function v, without fixing the inner utility function u a priori. Thus,

for two ambiguity-averse utility functions having two different inner utility functions,

we cannot conclude that one is more ambiguity-averse than the other even when the

transformation function ϕ of the former is more concave than the latter. This significantly
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limits the scope within which we can interpret and compare various quantitative results.

Our definition, on the other hand, is tailored to the need for a wider scope of numerical

comparison. It can be applied to two pairs of which the inner utility functions are different

and, in addition, has a clear equivalent condition in terms of the decision makers’ choices.

Thus, it allows the researcher to make a quantitative assessment on the KMM measure

of ambiguity aversion with no reference to the associated Arrow-Pratt measure for pure

risks.1

This paper is organized as follows. Section 2 lays out the setup of the paper and

gives some preliminary results. Section 3 presents a new relation between two pairs of

expected utility functions. Section 4 gives examples of the new relation for the case of

constant absolute or relative risk aversion. Section 5 provides an essentially equivalent

necessary and sufficient condition for the new relation in terms of the decision makers’

choice behavior. Section 6 discusses applications to the utility functions of KMM. Section

7 gives a summary and suggests a couple of directions of future research. All proofs are

in the appendix.

2 Setup

Let I be a non-degenerate (containing at least two points) open interval of R and u :

I → R. Assume that u is twice continuously differentiable and that u′′ < 0 < u′. We

also impose the Inada condition, that is, u′(x) → 0 as x → sup I, and u′(x) → ∞ as

x→ inf I. We call these conditions the basic conditions.

Denote by the range of u : I → R by Ranu, that is, Ranu = u(I) = {u(x) | x ∈ I}.
Ranu′ is analogously defined. Since u′′ < 0, the Inada condition is equivalent to Ranu′ =

R++.

For a utility function u : I → R, we define the Arrow-Pratt measure of absolute risk

aversion a(·, u) : I → R++ by letting a(x, u) = −u′′(x)/u′(x) for every x ∈ I. For x > 0,

we define the Arrow-Pratt measure of relative risk aversion as r(x, u) = −u′′(x)x/u′(x).

The utility functions that exhibit constant absolute or relative risk aversion satisfy

the basic conditions, but their ranges are different. In fact, let I = R and, with γ > 0,

u(x) = −1

γ
exp(−γx). (1)

Then u has the constant coefficient γ of absolute risk aversion, and Ranu = −R++. Let

1A similar complication arises in recursive utility as well. For example, in presenting functional
forms of recursive utility, Epstein (1992, equalities (4.23) and (4.24)) restricted the constant coefficient
of relative risk aversion to be at most one and the intertemporal elasticity of substitution to be at least
one. But when it comes to estimating these values in any quantitative work, other functional forms are
also necessary.
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I = R++ and, with γ > 0,

u(x) =

 lnx if γ = 1,
x1−γ

1− γ
otherwise.

(2)

Then u has the constant coefficient of relative risk aversion, and

Ranu =


R++ if γ < 1,

R if γ = 1,

−R++ if γ > 1.

The following proposition covers the case where the coefficients of relative risk aversion

are not constant.

Proposition 1 Suppose that an expected utility function u : R++ → R satisfies the basic

conditions.

1. If there is a b > 0 such that r(x, u) ≤ 1 for every x ≥ b, then Ranu is not bounded

from above.

2. If there are a b > 0 and a g ∈ (0, 1) such that r(x, u) < g for every x ≤ b, then

Ranu is bounded from below.

3. If there is a b > 0 such that r(x, u) ≥ 1 for every x ≤ b, then Ranu is not bounded

from below.

4. If there are a b > 0 and a g ∈ (1,∞) such that r(x, u) > g for every x ≥ b, then

Ranu is bounded from above.

Since these results will not be used in the subsequent analysis and their proofs are

elementary, we omit them. The message of the proposition is that the range of a utility

functions is closely related to the risk attitude that it represents and, hence, an additional

restriction on it may well turn out to be a significant restriction on the risk attitude. Since

the range of a utility function is the domain of the function that transforms the utility

function to another one, the implication of this proposition for a formal definition of the

statement that one utility function is more risk-averse than the other in the first pair to a

greater extent than in the second is that the function that transforms one utility function

to another should not be used. We will, instead, use the function that transforms the

derivative of a utility function to the derivative of another.
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3 Definition of the new relation

To understand our definition of the ranking over more-risk-averse-than relations, which

we will later give, the following proposition is helpful.

Proposition 2 Suppose that two expected utility functions u : I → R and v : I → R

satisfy the basic conditions. Define ψ : R++ → R++ by ψ = v′ ◦ (u′)−1. Then, for every

x ∈ I,
a(x, v)

a(x, u)
=
ψ′(u′(x))u′(x)

ψ(u′(x))
. (3)

It is easy to check that ψ′ > 0. As y → 0, (u′)−1(y) → sup I. Thus, ψ(y) =

v′ ((u′)−1(y)) → 0. Analogously, ψ(y) → ∞ as y → ∞. Define the elasticity of the

transformation function ψ, e(·, ψ) : R++ → R++ by

e(y, ψ) =
ψ′(y)y

ψ(y)
.

Then (3) can be rewritten as
a(x, v)

a(x, u)
= e(u′(x), ψ). (4)

Proposition 2 implies that v is at least as risk-averse as u if and only if v′ is an elastic

transformation (that is, everywhere having elasticity greater than or equal to one) of

u′. In particular, a proportional increase in the Arrow-Pratt measure of absolute risk

aversion from u to v is equal to the elasticity of the transformation.

Definition 1 Suppose that four expected utility functions u1 : I1 → R, v1 : I1 → R,

u2 : I2 → R, and v2 : I2 → R satisfy the basic conditions. Write ψ1 = v′1 ◦ (u′1)−1 and

ψ2 = v′2 ◦ (u′2)−1.

1. We say that v1 is more risk averse than u1 at least to the same extent as v2 is more

risk averse than u2, if

e(y1, ψ1) ≥ e(y2, ψ2) (5)

for every y1 ∈ R++ and y2 ∈ R++. We then write (u1, v1) I (u2, v2).

2. We say that v1 is more risk averse than u1 to a greater extent than v2 is more risk

averse than u2, if

e(y1, ψ1) > e(y2, ψ2) (6)

for every y1 ∈ R++ and y2 ∈ R++. We then write (u1, v1) B (u2, v2).

In the definition, the domains I1 and I2 may be different, and the ranges Ranu1,

Ran v1, Ranu2, Ran v2 may all be different. The two levels of marginal utility, y1 and y2
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that appear on each of the two sides of (5) and (6) may be taken to be different. If they

were taken to be equal, then the conditions would be written as

e(y, ψ1) ≥ e(y, ψ2) or e(y, ψ1) > e(y, ψ2), (7)

for every y ∈ R++, and we may say that ψ1 is more elastic as ψ2. If, in addition, we

followed the terminology of the strongly-more-risk-averse-than relation of Ross (1981),

we could say that that ψ1 is strongly more elastic as ψ2. By (3), (6) is equivalent to the

conditions that

a(x1, v1)

a(x1, u1)
>
a(x2, v2)

a(x2, u2)
(8)

for every x1 ∈ I1 and x2 ∈ I2.

Both I and B are transitive, B is irreflexive, but I is neither reflexive nor irreflexive.

Moreover, B is included in the asymmetric (strict) part of I (that is, if (u1, v1) B (u2, v2),

then (u1, v1) I (u2, v2) and (u2, v2) 6I (u1, v1)), and the former is strictly smaller than

the latter.2

Instead of saying that u1 is more risk-averse than v1 to a greater extent than u2 is

more risk-averse than v2, we could say more informally that u1 is more risk-averse than

v1, and even more so than u2 is more risk-averse than v2. For brevity, we shall thus refer

to the binary relations B and I as the even-more-risk-averse-than relation in the rest of

this paper.

4 Examples

In this section, we give examples of the even-more-risk-averse-than relation that involve

constant absolute or relative risk aversion. These examples involves transformation func-

tions ψn from u′n to v′n that have constant elasticities. The first, simplest, example deals

with constant absolute risk aversion.

Example 1 Suppose that four expected utility functions u1 : I1 → R, v1 : I1 → R,

u2 : I2 → R, and v2 : I2 → R have constant coefficients γ1, η1, γ2, and η2 of absolute risk

aversion (1). Then

ψn(y) = yηn/γn (9)

for every n = 1, 2 and every y ∈ R++. Hence,

e(·, ψn) = η1/γn (10)

2For every (u1, v2) and every (u2, v2), (u1, v1) I (u2, v2) and (u2, v2) I (u1, v1) if and only if e(·, ψ1)
and e(·, ψ1) take the same constant value. Thus, the symmetric part of I corresponds to the pair (ψ1, ψ2)
of identical transformations that have a constant elasticity.
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for every n = 1, 2. Thus, (u1, v1) I (u2, v2) if and only if η1/γ1 ≥ η2/γ2, and (u1, v1) B

(u2, v2) if and only if η1/γ1 > η2/γ2.

The next one deals with constant relative risk aversion.

Example 2 Suppose that four expected utility functions u1 : I1 → R, v1 : I1 → R,

u2 : I2 → R, and v2 : I2 → R have constant coefficients γ1, η1, γ2, and η2 of relative

risk aversion (2). Then, (9) and (10) hold. Thus, (u1, v1) I (u2, v2) if and only if

η1/γ1 ≥ η2/γ2, and(u1, v1) B (u2, v2) if and only if η1/γ1 > η2/γ2.

Example 2 looks much the same as Example 1, but it illuminates what can be brought

about by our use of the function ψn that transforms u′n to v′n, rather than the function

ϕn that transforms un to vn (n = 1, 2). Indeed, if we used the latter, the domain of ϕn

coincides with Ranun, which may be either R++ or −R++, depending on whether γn is

smaller or greater than one. For example, if γ1 < 1 < γ2, then the domain of ϕ1 coincides

with R++, while the domain of ϕ2 coincides with −R++. Hence, it does not make sense

to say that one of them is more concave than the other, and we cannot conclude that v1

is more risk averse than u1 to a greater extent than v2 is more risk averse than u2 or the

other way around.

Example 3 Suppose that two expected utility functions u1 : I1 → R and v1 : I1 → R

have constant coefficients γ1 and η1 of absolute risk aversion (1), and two expected utility

functions u2 : I2 → R and v2 : I2 → R have constant coefficients γ2 and η2 of relative risk

aversion (2). Then (9) and (10) hold. Thus, (u1, v1) I (u2, v2) if and only if η1/γ1 ≥ η2/γ2,

and(u1, v1) B (u2, v2) if and only if η1/γ1 > η2/γ2.

This example is an immediate consequence of the first two, but it would have been

impossible to compare a pair of expected utility functions of constant absolute risk aver-

sion and a pair of expected utility functions of constant relative risk aversion, if we had

stuck to the comparison by means of the function ϕn that transforms un to vn. Since

I1 = R and I2 ∈ R++ or I2 = −R++, I1 6= I2. Thus, the example also shows that the

comparison of the more-risk-averse than relation is possible even when the domains are

different.

The following example is a generalization of the previous one, in that the expected

utility functions have decreasing hyperbolic absolute risk aversion.

Example 4 For each n = 1, 2, let bn ∈ R and the four expected utility functions u1 :

(b1,∞)→ R, v1 : (b1,∞)→ R, u2 : (b2,∞)→ R, and v2 : (b2,∞)→ R have hyperbolic
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absolute risk aversion with the cautiousness parameters γn and ηn:3

a(xn, un) =
1

γn(xn − bn)
,

a(xn, vn) =
1

ηn(xn − bn)
,

Then,
a(xn, vn)

a(xn, un)
=
γn
ηn

for every xn ∈ (bn,∞). Thus, (u1, v1) I (u2, v2) if and only if η1/γ1 ≤ η2/γ2, and

(u1, v1) B (u2, v2) if and only if η1/γ1 < η2/γ2. That is, the even-more-risk-averse-than

relation can be characterized as a larger proportional decrease in the cautiousness.

In the following example the expected utility functions have increasing, rather than

decreasing, hyperbolic absolute risk aversion. It covers the case of quadratic expected

utility functions.

Example 5 For each n = 1, 2, let bn ∈ R and the four expected utility functions u1 :

(−∞, b1) → R, v1 : (−∞, b1) → R, u2 : (−∞, b2) → R, and v2 : (−∞, b2) → R have

hyperbolic absolute risk aversion with the cautiousness parameters γn and ηn:

a(xn, un) =
1

γn(bn − xn)
,

a(xn, vn) =
1

ηn(bn − xn)
,

Then,
a(xn, vn)

a(xn, un)
=
γn
ηn

for every xn ∈ (−∞, bn). Thus, (u1, v1) I (u2, v2) if and only if η1/γ1 ≤ η2/γ2, and

(u1, v1) B (u2, v2) if and only if η1/γ1 < η2/γ2. That is, the even-more-risk-averse-than

relation can be characterized as a larger proportional decrease in the absolute values of

the cautiousness.

The above five examples all involve pairs of expected utility functions for which the

ratio of the coefficients of absolute risk aversion, (2), is constant. Thus, every pair in

these examples can be compared with every other pair in the examples with respect to

I.

The following example is due to Collard, Mukerji, Sheppard, and Tallon (2018). It

is different from the previous ones in that there may be no ranking with respect to the

even-more-risk-averse-than relation.

3The cautiousness is defined as the derivative of the reciprocal of the coefficients of absolute risk
aversion. This terminology is due to Wilson (1968).
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Example 6 Suppose that two expected utility functions u1 : I1 → R and u2 : I2 → R

have constant coefficients γ1 and γ2 of relative risk aversion (2). For each n = 1, 2, let

αn > 0 and assume that ϕn has the same functional form as the expected utility function

of constant absolute risk aversion (1), with the parameter γ replaced by αn. Define

vn = ϕn ◦ un. Then

vn(x) = − 1

αn
exp

(
− αn

1− γn
x1−γn

)
,

v′n(x) = x−γn exp

(
− αn

1− γn
x1−γn

)
, (11)

and the basic conditions are met. Define ψn = v′n ◦ (u′n)−1, then

ψn(yn) =
(
y−1/γn
n

)−γn
exp

(
− αn

1− γn
(
y−1/γn
n

)1−γn
)

= yn exp

(
− αn

1− γn
y1−1/γn
n

)
ψ′n(yn) = exp

(
− αn

1− γn
y1−1/γn
n

)
+ yn exp

(
− αn

1− γn
y1−1/γn
n

)(
− αn

1− γn

(
1− 1

γn

)
y−1/γn
n

)
=

(
1 +

αn
γn
y1−1/γn
n

)
exp

(
− αn

1− γn
y1−1/γn
n

)
.

Thus,

e(yn, ψn) =
ψ′n(yn)yn
ψn(yn)

= 1 +
αn
γn
y1−1/γn
n .

Thus, (u1, v1) I (u2, v2) if and only if if and only if

1 +
α1

γ1

y
1−1/γ1
1 ≥ 1 +

α2

γ2

y
1−1/γ2
2 ,

which is equivalent to
α1γ2

α2γ1

≥ y
1/γ1−1
1 y

1−1/γ2
2 (12)

for every y1 and every y2. If γ1 = γ2 = 1, then the right-hand side is equal to one and

the inequality holds if and only if α1 ≥ α2.4 Otherwise, the right-hand side can take any

value in R++ as we vary y1 or y2. Thus, there is no value of the αn’s and the γn’s such

that (u1, v1) I (u2, v2).

In this example, since I1 = I2 = R++, we can take yn = u′n(x) for each n with a

common consumption level x ∈ R++ in the above example. Then (12) can be reduced to

α1γ2

α2γ1

≥ xγ1−γ2 ,

4In this case, un has constant coefficient 1 of relative risk aversion and vn has a constant coefficient
1 + αn of relative risk aversion. This will be shown by (13). In this case, (u1, v1) and (u2, v2) can be
compared by the more-ambiguity-averse-than relation of KMM.
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which holds for every x if and only if γ1 = γ2 and α1 ≥ α2. That is, (8) holds whenever

x1 = x2 if and only if γ1 = γ2 and α1 ≥ α2. This highlights a difference between our

definition of the even-more-risk-averse-than relation and the ambiguity measure of KMM,

to be defined in Section 6. In our definition, we require (8) to hold for all choices of y1

and y2, while the ambiguity measure of KMM is equivalent to requiring it to hold only

when I1 = I2 and there is an x such that u′n(x) = yn for each n. To compare two

marginal utilities at a common consumption level, it is, of course, necessary that I1 = I2,

but our definition of the even-more-risk-averse-than relation is applicable even when this

condition is not met.

In this example, vn has decreasing or increasing relative risk aversion, depending on

whether γn is greater or smaller than one. Indeed, by (11),

r(x, vn) = γn + αnx
1−γn . (13)

Thus, if γn > 1, then r(·, vn) is strictly decreasing, while if γn < 1, then it is strictly

increasing. This is a rather unexpected consequence of introducing ambiguity aversion

by way of ϕn of the form (1). On the one hand, the decision maker’s constant coefficient

of relative risk aversion over purely risky consumption plans can be measured, say, by the

fraction of the total wealth he invests into the asset with purely risky returns. On the

other hand, whether he exhibits increase or decreasing relative risk aversion over purely

ambiguous consumption plans (second-order acts, according to the terminology of KMM)

can be determined, say, by whether he would increase the fraction of the total wealth

he invests into the assets with purely ambiguous returns as the total wealth increases.

These two attitudes towards risk and ambiguity should better be disentangled in models

of any quantitative analysis, but, in this specification, a restriction on one automatically

implies a restriction on the other.

The use of functions (1) of constant absolute risk aversion as the function ϕn that

transforms un to vn was also suggested by Ju and Miao (2012, pages 566–567). The

justification for this is that if we take ϕn to be a function (2) of constant relative risk

aversion, then vn = ϕn ◦ un is not well defined when un has constant coefficient γn of

relative risk aversion greater than one (because, then, Ranun = −R++). This problem

can be circumvented if we specify the function ψn that transforms u′n to v′n to be any

plausible form, such as (9), because Ranu′n = R++ regardless of the values of γn.

5 Behavioral conditions

In this section, we obtain an equivalent behavioral condition of the even-more-risk-averse-

than relation. We start with some definitions.
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Definition 2 Suppose that four expected utility functions u1 : I1 → R, v1 : I1 → R,

u2 : I2 → R, and v2 : I2 → R satisfy the basic conditions. We say that v1 is more risk

averse than u1 in behavior at least to the same extent as v2 is more risk averse than u2,

if for each n and for every xn ∈ In, every cumulative distribution functions Fn, and every

sufficiently small εn > 0, if the support of Fn is included in [xn−εn, xn+εn] and its mean

is equal to xn, then there are a qn > 0 and a τ > 0 such that

u1(x1 − q1) ≤
∫
u1(z) dF1(z),

v1(x1 − τq1) ≥
∫
v1(z) dF1(z),

u2(x2 − q2) ≥
∫
u2(z) dF2(z),

v2(x2 − τq2) ≤
∫
v2(z) dF2(z).

We then write (u1, v1)I̊(u2, v2). If, in addition, these four inequalities hold as strict

inequalities, then we say that v1 is more risk averse than u1 in behavior to a greater

extent than v2 is more risk averse than u2 and write (u1, v1)B̊(u2, v2).

The first inequality in the definition of I̊ tells us that the certainty premium under

u1 is smaller than or equal to q1, while the second inequality tells us that the certainty

premium under v1 is greater than or equal to τq1. Hence, the proportional change in the

certainty premium induced by the change from u1 to v1 is greater than or equal to τ .

The third inequality tells us that the certainty premium under u2 is greater than or equal

to q2, while the fourth inequality tells us that the certainty premium under v2 is smaller

than or equal to τq2. Hence, the proportional change in the certainty premium induced

by the change from u2 to v2 is smaller than or equal to τ . Thus, the proportional change

in certainty premium is greater or equal when changing from u1 to v1 than when changing

from u2 to v2. The definition of I̊ requires that this be true for every small risk, regardless

of the consumption levels at which the certainty premiums are measured. The inequalities

in the definition of B̊ are different from those in the definition of I̊ only in that the strict

inequalities are all replaced by the weak inequalities. Whenever necessary, we shall refer

to the binary relations B̊ and I̊ as the behavioral even-more-risk-averse-than relation.

The following theorem is concerned with the four binary relations I, B, I̊, and B̊.

Theorem 1 B⊆ B̊ ⊆ I̊ ⊆I.

This theorem means that for four expected utility functions u1 : I1 → R, v1 : I1 → R,

u2 : I2 → R, and v2 : I2 → R satisfying the basic conditions. if (u1, v1) B (u2, v2), then

(u1, v1)B̊(u2, v2); if (u1, v1)B̊(u2, v2), then (u1, v1)I̊(u2, v2); and if (u1, v1)I̊(u2, v2), then

(u1, v1) I (u2, v2). It shows that the even-more-risk-averse-than relation is concerned with

11



the proportional change in the certainty premiums (the difference between the mean of

the random prospect and its certainty equivalent) caused by a change in expected utility

functions.

Putting the four conditions together and ignoring the difference between strict and

weak relations, we can conclude that the even-more-risk-averse-than relation can be de-

tected by a reversal of choices between the deterministic and random consumption plans

by some common proportional change in the certainty premiums. Note that the condi-

tions in this theorem are also applicable to define the even-more-risk-averse-than relation

between two pairs of preference relations over cumulative distributions functions that

may not be represented by expected utility functions. To formalize this last statement,

let %1
1 and %2

1 be preference relations defined on a set of cumulative distribution functions

on I1, and %1
2 and %2

2 be preference relations defined on a set of cumulative distribution

functions on I2. Imagining that %1
1, %2

1, %1
2, and %2

2 are represented by the expected

utility functions u1, v1, u2, and v2 and letting �1
1, �2

1, �1
2, and �2

2 be their asymmetric

(strict) parts, we can rewrite the inequalities in the definition of B̊ as

F1 �1
1 1[x1−q1,∞),

1[x1−τq1,∞) �2
1 F1,

1[x2−q2,∞) �1
2 F2,

F2 �2
2 1[x2−τq2,∞),

where, for every x, 1[x,∞) denotes the (degenerate) cumulative distribution function taking

value 1 on [x,∞) and 0 on (−∞, x). The inequalities in the definition of I̊ can be obtained

by replacing the �in by the %i
n. These conditions can be used to as the definition of the

statement that %2
1 is more risk-averse than %1

1 to a greater extent than (or at least to the

same extent as) %2
2 is more risk-averse than %1

2, even for preference relations that cannot

be represented by expected utility functions.

6 Application to the utility functions of KMM

As we stated in the introduction, this study is motivated by the smooth ambiguity

model of KMM. In this section, we show how our definition can be used to compare

two ambiguity-averse utility functions in the model.

6.1 Setup

Let S be the state space, which represents the uncertainty that the decision maker is

faced with. Denote by D the set of all probability measures S. Denote by C the set of

12



all functions of S into I.5 Suppose that two expected utility functions u : I → R and

v : I → R satisfy the basic conditions. Let µ be a probability measure on D. Define a

utility function W : C → R by letting

W (c) =

∫
D

v

(
u−1

(∫
S

u(c(s)) dπ(s)

))
dµ(π) (14)

for every c ∈ C. This nested expected utility function is the functional form that KMM

axiomatized. Write ϕ = v ◦ u−1, then

W (c) =

∫
D

ϕ

(∫
S

u(c(s)) dπ(s)

)
dµ(π). (15)

This shows that the decision maker is averse to the uncertainty that he perceives in the

expected utilities calculated by various probability measures π ∈ D if and only if ϕ is

concave, that is, v is more risk-averse than u. The probability measure µ represents his

subjective assessment of this uncertainty, which KMM termed as the second-order belief.

We see in (14) that if
∫
S
u(c(s)) dπ(s) is independent of π, then, writing x =

u−1
(∫

S
u(c(s)) dπ(s)

)
∈ I, we obtain W (c) = u(x). This means that if the conditional

certainty equivalent of c given a probability measure π ∈ supp µ is, in fact, independent

of π, then the utility function W is determined by the inner utility function u (as it

determines the conditional certainty equivalents), and the outer expected utility function

v is irrelevant as it only monotonically transforms the certainty equivalents. Thus, u

can be interpreted as representing the attitudes towards pure risk. On the other hand,

suppose that c is constant almost surely with respect to every π ∈ supp µ, but the con-

stant that c takes almost surely depends on π, then denote the value by c(π). Then,

W (c) =
∫
D
v(c(π)) dµ(π). This means that W (c) is determined only by the outer utility

function v, and the inner utility u is irrelevant as we take the certainty equivalents in the

calculation for W (c). Thus, v can be interpreted as representing the attitudes towards

the uncertainty that the decision maker perceives in the expected utility levels.

To give a new definition of the more-ambiguity-averse-than relation for the utility

functions of KMM and compare it with the definition KMM gave (Definition 5), we

impose the same restrictions on the state space as they did. Let S = Ω × [0, 1], where

Ω is a measurable space and [0, 1] is the closed unit interval endowed with the Lebesgue

measure λ. It is interpreted as an objective probability, and, as such, all the probabilities

that the decision maker may conceive of on the state space S have the common marginal

distribution λ on [0, 1].6 We assume that S contains at least two elements. By an abuse

of notation, we also denote a probability distribution on Ω by π, the set of all probability

5To make sure the utility function is indeed well defined, we need to impose some additional conditions
on S and C. To simplify the exposition, we omit them.

6We have taken [0, 1] and the Lebesgue measure λ as the objective probability measure to guarantee
that any distribution of consumption levels can be represented as a random variable on [0, 1].
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measures on Ω by D, the second-order belief on D by µ. By Fubini’s theorem, we can

then rewrite (14) as

W (c) =

∫
D

v

(
u−1

(∫
Ω×[0,1]

u(c(ω, ξ)) d(π ⊗ λ)(ω, ξ)

))
dµ(π) (16)

=

∫
D

v

(
u−1

(∫
Ω

(∫
[0,1]

u(c(ω, ξ)) dλ(ξ)

)
dπ(ω)

))
dµ(π),

=

∫
D

v

(
u−1

(∫
[0,1]

(∫
Ω

u(c(ω, ξ)) dπ(ω)

)
dλ(ξ)

))
dµ(π).

6.2 An alternative more-ambiguity-averse-than relation

Let W1 and W2 be two KMM utility functions defined on the same state space S =

Ω× [0, 1] and determined by two triples (u1, v1, µ1) and (u2, v2, µ2) via (16). Denote by In

the common domain of un and vn. Denote by Cn the set of all cn : S → In. The following

is a simplified version of the more-ambiguity-averse-than relation of KMM.

Definition 3 (KMM) Assume that I1 = I2 and µ1 = µ2. Write C for Cn. We say

that W1 is at least as ambiguity-averse as W2 if, for every c ∈ C and every d ∈ C,

W2(c) ≥ W2(d) whenever d(ω, ξ) is independent of ω ∈ Ω and W1(c) ≥ W1(d).

In the first part of this definition, we assume that the two utility functions share the

same domain of consumption levels and the same second-order belief. The assumption of

common domain is needed as this definition is concerned with the rankings by W1 and W2

over common consumption plans c and d. The assumption of the common second-order

belief is imposed to exclude the possibility that the difference in ambiguity attitudes arises

from a difference in second-order beliefs. The integral part of their definition is in the

second part of this definition. It requires that for two consumption plans c and d, if d is

unambiguous and it is at most as desirable as another, possibly ambiguous, consumption

plan c for W1, then d should also be at most as desirable as c for W2. This definition

formalizes the idea, putting the discrepancy between weak and strict preferences aside,

that if the unambiguous consumption plan is inferior for the more ambiguity-averse utility

function W1, it should also be so for the less ambiguity-averse utility function W2.

The original definition by KMM is more intricate than Definition 3. They gave the

more-ambiguity-averse-than relation over the family of pairs of preference relation on

the set C and preference relations on the set of fictitious consumption plans (termed

by KMM as second-order acts) contingent on probability measures π on Ω,7 where the

family is constructed by indexing the pairs by the supports of second-order beliefs in

7In fact, KMM axiomatized the functional form (14) in terms of a pair of a preference relation on C
and a preference relation on the set of second-order acts, rather than just in terms of a preference relation
on C. Seo (2009) axiomatized the functional form that extends (14) by dispensing with the preference
relation on the set of second-order acts and introducing three-stage, rather than two-stage, lotteries.
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D; and they defined one pair as being more ambiguity-averse than another if the same

rankings between an unambiguous consumption plan d and a possibly ambiguous plan c

holds as in Definition 3 for all supports of second-order beliefs. In contrast, Definition

3 does not involve any preference relation on the set of second-order acts, and deals

with a single preference relation rather than a family of preference relations. KMM’s

fully-fledged definition is important, especially when we interpret numerical results on

KMM utility functions, because it makes explicit the otherwise implicit assumption that

a decision maker’s attitudes towards risk (represented by the inner utility function u)

and ambiguity (represented by the outer utility function v) should travel with him across

different settings (represented by the supports of second-order beliefs).8 Yet, in the

subsequent analysis, we use Definition 3 because this simplified version is sufficient to

illustrate the difference in the definition of a more-ambiguity-averse-than relation between

KMM and this paper.

Theorem 2 of KMM shows that for W1 and W2 defined through (16) with I1 = I2

and µ1 = µ2, W1 is at least as ambiguity averse as W2 if and only if u1 is an affine

transformation of u2 and v1 is a concave transformation of v2. The affinity between u1

and u2 follows from the fact that in Definition 3 (a simplified version of the definition

of KMM), the consumption plan c may be unambiguous as well. In fact, by restricting

the definition to the case where both d and c are unambiguous, we can see that W1 and

W2 must agree on the ranking between unambiguous consumption plans whenever one is

more ambiguity-averse than the other in the sense of Definition 3. But this is equivalent

to saying that u1 is an affine transformation of u2.

This consequence of the more-ambiguity-averse-than relation is somewhat unfortu-

nate, because it significantly limits the scope within which we can compare various

quantitative results on ambiguity attitudes in the literature. To see this point, imag-

ine that given a set of data on portfolio choices, we have estimated ambiguity-averse

utility functions W1 and W2 for two groups of investors that are formed on the basis of

some observable characteristics, such as age, gender, and occupation. We would then like

to know to what extent the difference in ambiguity attitudes can account for the differ-

ence in portfolio choices between the two groups. The natural course of action would

be to compare the estimated ϕ1 and ϕ2. However, Definition 3 would provide no sound

theoretical foundation for such a comparison if the estimates of u1 and u2 were different.

Our definition of a more-ambiguity-averse-than relation does not suffer from this defi-

ciency. Unlike Definition 3, our definition neither assume that µ1 = µ2 nor imply that u1

is an affine transformation of u2. Denote by ι the function defined on S that constantly

takes value one. Our definition can then be stated as follows.

8Assumption 4 of KMM requires these attitudes to be separable from the settings. But whether such
a separation is possible is a contentious issue, as can be seen in the discussions of Epstein (2010) and
Klibanoff, Marinacci, and Mukerji (2012).
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Definition 4 We say that W1 is at least as ambiguity-averse as W2 if for each n and for

every xn ∈ In, every sufficiently small εn > 0, every cn ∈ Cn, and every dn ∈ Cn, if they

satisfy the first two of the following three conditions, then there are a qn > 0 and a τ > 0

that satisfy the last one.

1. dn(ω, ξ) does not depend on ω ∈ Ω. We thus write dn(ξ) and regard dn : [0, 1]→ In;

2. Define en : D → In by letting

en(π) = u−1
n

(∫
Ω

un(cn(ω, ξ)) d(π ⊗ λ)(ω, ξ)

)
(17)

for every π ∈ D. Then the distribution of en, µn◦e−1
n , coincides with the distribution

of dn, λ ◦ d−1
n . Moreover, their support is included in [xn − εn, xn + εn] and their

mean is equal to xn,

3.

W1((x1 − q1)ι) ≤ W1(d1),

W1((x1 − τq1)ι) ≥ W1(c1),

W2((x2 − q2)ι) ≥ W2(d2),

W2((x2 − τq2)ι) ≤ W2(c2).

We then write W1ÎW2. If, in addition, the inequalities in the last condition hold as strict

inequalities, then we say that W1 is more ambiguity-averse than W2, and write W1B̂W2.

This definition compares the preference between a deterministic consumption plan

(xn − qn)ι and an unambiguous consumption plan dn, with the preference between a

deterministic consumption plan (xn − τqn)ι and a purely ambiguous consumption plan

cn. To be more precise, by (16) and the change-of-variable formula,

Wn(dn) = vn

(
u−1
n

(∫
[0,1]

un(dn(ξ)) dλ(ξ)

))
= vn

(
u−1
n

(∫
In

un(x) d(λ ◦ d−1
n )(x)

))
.

Since vn is monotone, the ranking between dn and (xn−qn)ι can be reduced to the ranking

between the distribution λ ◦ d−1
n and the deterministic consumption level xn − qn by the

inner expected utility function un. By (17) and the change-of-variable formula,

Wn(cn) =

∫
D

vn (en(π)) dµn(π) =

∫
In

vn(x) d(µn ◦ e−1
n )(x).

Thus, the ranking between cn and (xn − τqn)ι can be reduced to the ranking between

the distribution µn ◦ e−1
n and the deterministic consumption level xn − τqn by the outer
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expected utility function vn. Since λ ◦ d−1
n = µn ◦ e−1

n , the two rankings differ only in

the expected utility function with respect to which the two (random and deterministic)

consumption plans are ranked. Following the terminology of KMM, we shall refer to e as

the second-order act associated with cn.

This sort of comparison between two rankings was envisaged by Definition 2, but

the comparison in Definition 4 is different from it in an important respect: While the

alternatives, xn− qn, xn− τqn, and Fn, in Definition 2 can be set up without knowing the

utility functions (un and vn), to set up the alternatives, cn, dn, xn − qn, and xn − τqn, in

Definition 4, we need to know the inner utility function un and the second-order belief µn

because cn and dn must satisfy λ◦d−1
n = µn◦e−1

n , where the fictitious consumption plan en

in (17) depends on the inner utility function un. In this sense, the more-ambiguity-averse-

than relation of Definition 4 is better suited to the case where the attitudes towards risk

(represented by the inner utility function un) and the second-order beliefs µn are already

known.9

The next two theorems show how our more-ambiguity-averse-than relation is related

to the even-more-risk-averse-than relation in behavior, which we defined in Definition 2.

They give an easy way to check whether a KMM utility function is more ambiguity-averse

than another. The first one is simple.

Theorem 2 Define two utility function W1 : C1 → R and W2 : C2 → R on the same

state space S = Ω × [0, 1], with [0, 1] endowed with the Lebesgue measure, by two triples

(u1, v1, µ1) and (u2, v2, µ2) via (16). Then

1. If (u1, v1)B̊(u2, v2), then W1B̂W2.

2. If (u1, v1)I̊(u2, v2), then W1ÎW2.

This theorem shows, roughly, that the even-more-risk-averse-than relation, in behav-

ior, implies the more-ambiguity-averse-than relation. The second theorem is a partial,

but not the full, converse of the first. To see why the full converse cannot be obtained,

consider the case where the second-order belief µn is concentrated on a single probability

measure on Ω, then, for every (cn, dn) satisfying the conditions of Definition 4, the dis-

tribution µn ◦ e−1
n is degenerate on a single consumption level and, thus, the inequalities

9Thus, if we were to conduct experiments to infer and compare two KMM utility functions W1 and
W2, we should do so in two stages under the assumption that we know that the two second-order beliefs
µ1 and µ2 are the same and, in addition, what the common second-order belief is. In the first stage
of experiments, we only use unambiguous consumption plans to infer the inner utility functions un. In
the second stage, based on the inner utility function un inferred in the first stage and the common
second-order belief posited at the beginning, we set up cn and dn to satisfy condition 2 of Definition 4,
and choose xn, qn, and τ see if it is possible to generate a preference reversals between the two utility
functions W1 and W2 when cn and dn are compared to xn − τqn and xn − qn. The assumption that
the two second-order beliefs are known and identical would be unnecessary if it were possible to set up
fictitious consumptions plans contingent on π (second-order acts) in experiments to infer µn and vn.
KMM argued that it may well be possible to do so to justify their Assumption 2, which is one of the
axioms for the functional form (14).
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in Condition 3 of Definition 4 cannot have any implication on the outer utility function

vn. We thus impose the following condition on each KMM utility function W defined on

the state space S = Ω× [0, 1] and determined by a triple (u, v, µ) via (16).10

Definition 5 We say that the second-order belief µ is rich if for every Borel probability

measure ν on the set I of consumption levels with bounded support, there is a function

c : Ω× [0, 1]→ I such that ν = µ ◦ e−1, where e : D → I is defined by

e(π) = u−1

(∫
Ω

u(c(ω, ξ)) d(π ⊗ λ)(ω, ξ)

)
(18)

for every π ∈ D.

The aim of this condition is self-evident. It is to guarantee that every distribution on

I with a bounded support can be attained as a distribution of some associated second-

order act. We can then compare the risk aversion of the inner utility function un and

of the outer utility function vn through the distribution of associated second-order acts.

The converse of Theorem 2 under the richness condition can be stated as follows.

Theorem 3 Define two utility function W1 : C1 → R and W2 : C2 → R on the same

state space S = Ω × [0, 1], with [0, 1] endowed with the Lebesgue measure, by two triples

(u1, v1, µ1) and (u2, v2, µ2) via (16). Suppose that µ1 and µ2 are rich. Then

1. If W1B̂W2, then(u1, v1)B̊(u2, v2).

2. If W1ÎW2, then (u1, v1)I̊(u2, v2).

A drawback of this theorem is that the validity of the richness condition may be

difficult to check. Below, we give a couple of examples that does and does not satisfy the

condition to illustrate the fine line between rich and non-rich second-order beliefs.11

Example 7 Let Ω = [0, 1] and take the support of the second-order belief to be {δω |
ω ∈ Ω}, where δω is the (degenerate) probability measure concentrated on ω. With the

parametrization of the (first-order) beliefs ω 7→ δω on Ω, take the second-order belief to

be the uniform distribution on Ω.

For every c : Ω→ I, if we define e by (18), then

e(δω) = u−1

(∫
Ω

u(c(σ)) dδω(σ)

)
= u−1 (u(c(ω))) = c(ω)

10The richness condition can be stated in the more general form (14) of KMM utility functions.
11The apparent difference between the two examples lies in the supports of the first-order beliefs in

the support of the second-order belief. In the first example, where the richness condition is satisfied,
the supports of the first-order beliefs in the support of the second-order belief are mutually disjoint. In
the second example, where the richness condition is not satisfied, these supports are identical almost
surely with respect to the second-order belief. The importance of disjoint supports of first-order beliefs
is mentioned in Footnote 5 of KMM and used the proof of their Proposition 1.
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for every ω ∈ Ω. Thus, for every Borel probability measure ν on I, if we denote its

cumulative distribution function by F and let c be its generalized inverse in the sense of

Embrecht and Hofert (2014), then ν = µ ◦ e−1. Thus, the uniform distribution on the

parameterized family (δω)ω∈Ω of probabilities on Ω satisfies the richness condition.

Example 8 Let Ω = [0, 1]. Let π0 and π1 be two probability measures on Ω. For each

θ ∈ [0, 1], define πθ = (1 − θ)π0 + θπ1. Then define the second-order belief µ as the

uniform distribution on the parameterized family (πθ)θ∈[0,1]. Thus, just like Example 7,

the second-order belief is a family of probability measures parameterized by [0, 1]. We

will, however, see that the richness condition is violated in this example.

For every c : Ω× [0, 1]→ I, if we define e by (18), then

e(πθ) = u−1

(∫
Ω×[0,1]

u(c(ω, ξ)) d(πθ ⊗ λ)(ω, ξ)

)
= u−1

(
(1− θ)

∫
Ω×[0,1]

u(c(ω, ξ)) d(π0 ⊗ λ)(ω) + θ

∫
Ω×[0,1]

u(c(ω, ξ)) d(π1 ⊗ λ)(ω, ξ)

)
.

for every θ ∈ [0, 1]. Write ê(θ) = e(πθ) and yθ =
∫

Ω×[0,1]
u(c(ω, ξ)) d(πθ ⊗ λ)(ω, ξ), then

the above equality can be more succinctly written as

ê(θ) = u−1((1− θ)y0 + θy1).

If y0 = y1, then ê is a constant function and µ ◦ c−1 is a degenerate probability measure

on I. Suppose that y0 < y1. Then ê is a strictly increasing function that maps [0, 1]

onto [u−1(y0), u−1(y1)]. Let F : [u−1(y0), u−1(y1)]→ [0, 1] be the cumulative distribution

function of µ ◦ e−1. Then,

F (z) =
u(z)− y0

y1 − y0
(19)

for every z ∈ [u−1(y0), u−1(y1)]. Indeed, since ê is strictly increasing and continuous

and the second-order belief µ as the uniform distribution on the parameterized family

(πθ)θ∈[0,1], F coincides with the inverse ê−1 : [0, 1]→ [u−1(y0), u−1(y1)]. But ê−1 coincides

with the right-hand side of (19).

The equality (19) implies that every probability measure µ ◦ e−1 that can be attained

as in Condition 2 of Definition 4 has a cumulative distribution function that coincides

with a truncated and normalized inner utility function u. Therefore, the second-order

belief µ is not rich.

6.3 Relevance of the alternative definition to the literature

The ambiguity aversion coefficients in the smooth model were inferred or estimated from

experimental evidence or asset market data, borrowed from earlier works, or quoted
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as a consensus in the profession, by Halevy (2007), Ju and Miao (2011), Chen, Ju,

and Miao (2014), Jahan-Parvar and Liu (2014), Thimme and Vöckert (2015), Gallant,

Jahan-Parvar, and Liu (forthcoming), Altug, Collard, Çakmakli, Mukerji, and Özsöylev

(2018), and Hara and Honda (2018). These studies used or obtained different (constant)

coefficients of ambiguity aversion, which corresponds to ηn/γn in Examples 1, 2, and 3.

It is impossible to conclude that the decision maker with a higher estimated coefficient

of ambiguity aversion is more ambiguity-averse in the sense of KMM (Definition 3 of this

paper), because these studies involve different risk aversion coefficients (which correspond

to γn in Examples 1, 2, and 3).

To see how our more-ambiguity-averse-than relation can be fit in these studies, let’s

take up Chen, Ju, and Miao (2014), who studied the optimal portfolio choice problem

of an investor who has a utility function of Hayashi and Miao (2011), which not only

extends utility functions of KMM to a dynamic setting but also generalizes recursive

utility functions of Epstein and Zin (1989), thereby allowing for the three-way separation

between risk aversion, ambiguity aversion, and intertemporal elasticity of substitution.

Tables 1 and 3 of their paper list up various configurations of the coefficients of relative

risk aversion of the inner expected utility function un, which is denoted by γn in Example

2, and the coefficients of relative risk aversion of the outer expected utility function vn,

which is denoted by η in Example 2. In Table 1, for each pair (γ, η) ∈ {0.5, 2, 5, 10, 15}×
{40, 50, 60, 70, 80, 90, 100, 110}, they presented the ambiguity premium, defined as the

difference between the certainty equivalents of a purely risky act and a purely ambiguous

(second-order) act. When γ is fixed, say, at 2, increasing η from 50 to 100 leads to

a more ambiguity-averse investor in the sense of KMM. But, the investor is not more

ambiguity-averse when (γ, η) = (2, 40) than when (γ, η) = (5, 90) or the other way around,

because the coefficients γ of relative risk aversion are different between the two pairs.

Yet, according to our definition, the investor is deemed as more ambiguity-averse when

(γ, η) = (2, 40) than when (γ, η) = (5, 90), because 40/2 = 20 > 18 = 90/5. Nonetheless,

the ambiguity premium is lower when (γ, η) = (2, 40) than when (γ, η) = (5, 90). This

is due to the difference in the way the premiums are defined. In this paper, the even-

more-risk-averse-than relation is defined according to the ratio of the certainty premiums

(the differences between the expected reward and the certainty equivalents of a lottery)

with respect to γ and with respect to η, while their “ambiguity premium” is equal to the

difference between the certainty two premiums. The latter is more pronounced when the

coefficient γ of relative risk aversion is larger.

In Table 3, Chen, Ju, and Miao (2014) presented the optimal fraction of investment

into the stock (the other asset being riskless in their model). The pairs (γ, η) that they
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used are

(2, 2), (2, 60), (2, 80), (2, 100),

(5, 5), (5, 60), (5, 80), (5, 100),

(10, 10), (10, 60), (10, 80), (10, 100).

They observed that for a fixed γ, increasing η leads to a lower fraction of investment

into the stock. The definition of KMM covers this case, but does not tell us whether

the investor is more ambiguity-averse when (γ, η) = (5, 60) than when (γ, η) = (10, 100).

According to our more-ambiguity-averse-than relation, the investor is deemed as more

ambiguity-averse when (γ, η) = (5, 60) than when (γ, η) = (10, 100), because 60/5 =

12 > 10 = 100/10. They found that the optimal fraction of investment in the stock is

higher when (γ, η) = (5, 60) than when (γ, η) = (10, 100). This is consistent with their

observation that the coefficient γ of relative risk aversion for the inner expected utility

function u has larger effects on the optimal fraction of investment into the stock than the

coefficient η of relative risk aversion for the inner expected utility function v.

Another instance in which the scope of comparison of ambiguity aversion is enhanced

by our definition of ambiguity aversion is Hara and Honda (2018) versus the other contri-

butions mentioned at the beginning of this subsection. Hara and Honda (2018) assumed

constant absolute risk aversion as in Example 1, and the others assumed constant relative

risk aversion as in Example 2. The two are not comparable according the more-ambiguity-

averse-than relation of KMM. Moreover, the concavity of the functions ϕn that transform

un to vn are not comparable, because the domain of ϕn is R in the case of constant abso-

lute risk aversion, while it is R++ or −R++ in the case of constant relative risk aversion.

Yet, as mentioned right after Example 3, our definition of the more-ambiguity-averse-

than relation allows us to compare the ambiguity aversion between the two cases on

sound economic ground.

Hara and Honda (2018) found that for the representative consumer, who holds the

stock market index (a proxy of the market portfolio), ηn/γn must be at least 9.25 and may

well be higher. This figure is much higher than the figures obtained in many other works

for the representative consumer. For example, Ju and Miao’s (2012) calibration shows

that ηn/γn is around 4.43. It is worthwhile to attempt to explain where the difference is

from, but without our definition of the more-ambiguity-averse-than relation, this question

would have been ill-posed.12

12It is tempting to speculate that the difference arises from the difference in settings, because Hara
and Honda (2018) considered a static model with multiple risky assets, while the others considered a
dynamic model with a single risky asset. But such a speculation may not be consistent with the basic
tenet of KMM utility functions, explained in Footnote 8 as well, whereby the second-order belief may
depend on settings but the ambiguity aversion must not.
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7 Conclusion

Given two pairs of expected utility functions, we have formalized the statement that one

expected utility function is more risk-averse than the other in the first pair to a greater

extent than in the second pair. To do so, we used the elasticity of the function that

transforms the derivatives of one expected utility function to the derivatives of the other.

As was seen in (5), (6), and (8), when we compared the elasticities of ψ1 and ψ2, we

require the elasticity of ψ1 is higher than the elasticity of ψ2, regardless of the choices

of the marginal utilities, y1 and y2, of the expected utility functions. This makes our

definition of the even-more-risk-averse-than relation rather stringent, and two pairs of

expected utility function may not be comparable according to the relation. One might

be led to think that it would be more practical to define the even-more-risk-averse-than

relation by choosing the marginal utilities, y1 and y2, to be equal. There are two reasons

why this attempt is unlikely to be successful. First, since the level of marginal utilities

may be changed by a scalar multiplication to an expected utility function (which does

not change the risk attitudes it represents), choosing the same level of marginal utilities

for two expected utility functions has, in general, no economic meaning. Second, as we

did in our explanation after Example 6, it might make sense to take y1 and y2 to be the

marginal utilities at a common consumption level. This is possible, however, only if the

expected utility functions of the two pairs have the same domain. This would restrict the

applicability of our definition, as it would exclude cases such as Example 3. Yet, when

the domains are the same, it might be possible to give a less stringent, more practical

definition of the even-more-risk-averse-than relation. Exploring the implication of this

alteration can be a direction of future research.

Another direction of future research is to find a narrower class of cumulative distri-

bution functions Fn that can be used in the definitions of the behavioral even-more-risk-

averse-than relation (Definition 2) and the more-ambiguity-averse-than relation (Defi-

nition 4). In these definitions, arbitrary cumulative distribution functions with suffi-

ciently small supports are used, but because of this arbitrariness, we needed to impose a

rather stringent richness condition (Definition 5) on second-order beliefs to establish the

equivalence between the behavioral even-more-risk-averse-than relation and the more-

ambiguity-averse-than relation. It might be sufficient to consider just cumulative distri-

bution functions for binary distributions, but a careful analysis is in order.

Finally, the most important direction of future research is to extend the more-ambiguity-

averse-than relation (Definition 4) to other types of ambiguity-averse utility functions. As

explained in Footnote 8 of KMM, two utility functions that are comparable with respect to

the more-ambiguity-averse-than relations employed for other classes of ambiguity-averse

utility functions, such as α-MEU functions, must also exhibit the same preference over

purely risky consumption plans. This property, again, significantly narrows down the
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scope of comparison of ambiguity attitudes. Finding a general definition of the more-

ambiguity-averse-than relation that covers these classes is imperative to increase the

usefulness of ambiguity-averse utility functions in numerical and empirical analysis.

A Lemmas and Proofs

Proof of Proposition 2 By differentiating both sides of v′(x) = ψ(u′(x)) with respect

to x, we obtain v′′(x) = ψ′(u′(x))u′′(x). By dividing both sides of this equality by both

sides of the previous one, we obtain

a(x, v) = −ψ
′(u′(x))

ψ(u′(x))
u′′(x).

By substituting u′′(x) by −u′(x)a(x, u), we obtain (3) . ///

We say that a cumulative distribution function on R satisfies the basic conditions its

mean is equal to zero and its variance is finite and greater than zero.

For each distribution function F with zero mean, write V (F ) =
∫
R
z2 dz. It is equal to

the variance of any random variable whose distribution coincides with F . The following

fact is well known. We omit the proof.

Lemma 1 Let u : I → R be an expected utility functions satisfying the basic conditions.

For each x ∈ I and each cumulative distribution function F satisfying the basic conditions,

define p(x, F, u) by

u(x− p(x, F, u)) =

∫
R

u(x+ z) dF (z), (20)

and r(x, F, u) by

r(x, F, u) = p(x, F, u)− a(x, u)

2
V (F ). (21)

Then, for every x ∈ I and every ε > 0, there is a δ > 0 such that for every cumulative

distribution function F satisfying the basic conditions, if the support of F is included in

[−δ, δ], then
|r(x, F, u)|
V (F )

< ε.

Lemma 2 Let u : I → R and v : I → R be two expected utility functions satisfying the

basic conditions. For each x ∈ I and each cumulative distribution function F satisfying

the basic conditions, define p(x, F, u) by

u(x− p(x, F, u)) =

∫
R

u(x+ z) dF (z), (22)

and analogously for p(x, F, v). Then, for every x ∈ I and every ε > 0, there is a δ > 0

such that for every cumulative distribution function F satisfying the basic conditions, if
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the support of F is included in [−δ, δ], then∣∣∣∣p(x, F, v)

p(x, F, u)
− a(x, v)

a(x, u)

∣∣∣∣ < ε.

Proof of Lemma 2 By the definitions of r(x, F, u) and r(x, F, v),

p(x, F, v)

p(x, F, u)
=

V (F )

2
a(x, v) + r(x, F, v)

V (F )

2
a(x, u) + r(x, F, u)

=

a(x, v) + 2
r(x, F, v)

V (F )

a(x, u) + 2
r(x, F, u)

V (F )

.

By Lemma 1, by taking a sufficiently small δ > 0, for every cumulative distribution

function F whose support is included in [−δ, δ], the second terms of the numerator and

the denominator can be made arbitrarily close to zero. The proof is thus completed. ///

Proof of Theorem 1 Suppose that (u1, v1) B (u2, v2). Let xn, Fn, and εn be as in

Definition 2. Then (8) holds. Write F̂n be the cumulative distribution function defined

by F̂n(z) = Fn(z + x). Then F̂n has mean zero and its support is included in [−εn, εn].

By Lemma 2, εn can be so small that

p(x1, F̂1, v1)

p(x1, F̂1, u1)
>
p(x2, F̂2, v2)

p(x2, F̂2, u2)
.

Let

τ ∈

(
p(x2, F̂2, v2)

p(x2, F̂2, u2)
,
p(x1, F̂1, v1)

p(x1, F̂1, u1)

)
,

q1 ∈

(
p(x1, F̂1, u1),

p(x1, F̂1, v1)

τ

)
,

q2 ∈

(
p(x2, F̂2, v2)

τ
, p(x2, F̂2, u2)

)
.

Then

q1 > p(x1, F̂1, u1),

τq1 < p(x1, F̂1, v1),

q2 < p(x2, F̂2, u2),

τq2 > p(x2, F̂2, v2).

Thus, the four inequalities of Condition 2 of Definition 2 are met.

The inclusion B̊ ⊆ I̊ follows from the definitions of B̊ and I̊.
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Suppose that (u1, v1)I̊(u2, v2). Let xn ∈ In. For each small εn > 0 and each cumula-

tive distribution function that have zero mean and support in [−εn, εn], there are qn and

τ such that the four inequalities of Condition 1 of Definition 2 hold. Thus

q1 ≥ p(x1, F̂1, u1),

τq1 ≤ p(x1, F̂1, v1),

q2 ≤ p(x2, F̂2, u2),

τq2 ≥ p(x2, F̂2, v2).

Thus,

p(x2, F̂2, v2)

p(x2, F̂2, u2)
≤ τ ≤ p(x1, F̂1, v1)

p(x1, F̂1, u1)
.

By Lemma 1, by taking εn > 0 sufficiently small, we can make p(xn, F̂n, vn)/p(xn, F̂n, un)

arbitrarily close to a(xn, vn)/a(xn, un). Thus,

a(x2, v2)

a(x2, u2)
≤ a(x1, v1)

a(x1, u1)
.

Thus (u1, v1)Î(u2, v2). ///

Proof of Theorem 2 Suppose that (u1, v1)B̊(u2, v2), then W1B̂W2. Let xn, εn, cn, and

dn be as in Definition 4. Let en be as in Condition 2 of the definition. Denote by Fn the

cumulative distribution function of λ ◦ d−1
n (which coincides with µn ◦ e−1

n ). Then Fn has

mean xn and its support is included in [xn − εn, xn + εn]. By the definition of B̂, there

are a qn and τ such that

u1(x1 − q1) <

∫
u1(z) dF1(z), (23)

v1(x1 − τq1) >

∫
v1(z) dF1(z), (24)

u2(x2 − q2) >

∫
u2(z) dF2(z), (25)

v2(x2 − τq2) <

∫
v2(z) dF2(z). (26)

Note that

Wn((xn − qn)ι) = vn(x1 − qn), (27)

Wn((xn − τqn)ι) = vn(xn − τqn). (28)
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By (16),

Wn(cn) =

∫
D

vn (en(π)) dµn(π) =

∫
In

vn(z) dFn(z), (29)

Wn(dn) = vn

(
u−1
n

(∫
[0,1]

un (dn(ξ)) dλ(ξ)

))
= vn

(
u−1
n

(∫
In

un (z) dFn(z)

))
(30)

By applying v1 ◦ u−1
1 to both sides of (23), we obtain

v1(x1 − q1) < v1

(
u−1

1

(∫
u1(z) dF1(z)

))
. (31)

By (27), (30), and (31), W1((x1 − q1)ι) < W1(d1). By (24), (28), and (29), W1((x1 −
τq1)ι) > W1(c1). We can analogously show that W2((x2 − q2)ι) > W2(d2) and W2((x2 −
τq2)ι) < W2(c2). Thus Condition 3 of Definition 4 is met. Thus, W1B̂W2. This proves

that if (u1, v1)B̊(u2, v2), then W1B̂W2.

We can similarly show that if (u1, v1)I̊(u2, v2), then W1ÎW2. ///

Proof of Theorem 3 Suppose that W1B̂W2, then (u1, v1)B̊(u2, v2). To do so, for each

n = 1, 2 and let xn ∈ In, εn > 0, and Fn be as in Definition 2. Let dn be the generalized

inverse of Fn, in the sense of Embrecht and Hofert (2014), then the cumulative distribution

function of dn coincides with Fn. Since µn is rich, there is a cn : Ω×[0, 1]→ I such that the

cumulative distribution function of µn◦e−1
n coincides with Fn, where en is defined by (17).

Then λ◦d−1
n = µn◦e−1

n , and they have mean xn and supports included in [xn−εn, xn+εn].

By the definition of B̂, the four inequalities in Condition 3 of Definition 4 hold as strict

inequalities. By reverting the argument of showing that that if (u1, v1) B (u2, v2) then

W1B̂W2, we can show that these four inequalities imply the four inequalities in Condition

3 of Theorem 1. This proves that if W1B̂W2, then (u1, v1)B̊(u2, v2).

We can similarly show that if µ1 and µ2 are rich and W1ÎW2, then (u1, v1)I̊(u2, v2).

///
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