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Abstract

This paper considers an auctioneer who has a non-monotonic utility
function with a unique maximizer. The auctioneer is able to reject all
bids over some amount by using rejection prices. We show that the opti-
mal rejection price for such an auctioneer is lower than and equal to that
maximizer in first-price and second-price sealed-bid auctions, respectively.
Further, in each auction we characterize a necessary and sufficient condi-
tion that by using the optimal rejection price not only the auctioneer but
also bidders can be better off, compared to a standard auction. Finally,
we find that the auctioneer strictly prefers a first-price sealed-bid auction
if he is risk-averse when his revenue is lower than the maximizer or if the
distribution of revenues which are lower than the maximizer in a stan-
dard first-price sealed-bid auction is first-order stochastic dominant over
the one in a standard second-price sealed-bid auction.
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1 Introduction

In standard auction theory, it is assumed that an auctioneer’s utility monotoni-
cally increases with money. In this paper, contrary to the standard assumption,
we consider an auctioneer with non-monotonic utility.

Here is a real-life example.1 Nowadays, many of China’s local governments
have introduced a mechanism in land auctions which is similar to the trading
curb in stock markets. Under this mechanism, the government will set a highest
selling price for each residential land and end the land auction if the bids go
above that price. The news reported that why the local governments introduce
the mechanism is to control surging land costs that have been driving up home
prices. On the one hand, in China, the land auctions are a major source of
fiscal income for the local governments.2 On the other hand, as a part of home
prices, an extravagant land price may aggravate the real estate bubble in China.
Therefore, the local governments would like to keep the land price within a
reasonable range.

Two features are important in this example. First, the auctioneer (the local
governments in China) has a non-monotonic utility function with a unique max-
imizer (interior). This is because the land price imposes a negative externality
which increases with money on his utility. Hence, the utility of the auctioneer
increases with money while the externality is small but decreases while it is
large enough. Second, the auctioneer may refuse all bids over some amount (in
this paper we call it a rejection price). Being afraid of the negative externality,
the auctioneer would like to refuse the bid which is higher than the rejection
price in order to maximize his expected utility.

In fact, such a kind of auctioneer is not uncommon in reality. In a large
auction which sells high-stake objects, the auctioneer may also have a non-
monotonic utility function. The worth of a good is large compared to the wealth
of a bidder in a large auction. Thus winners can declare bankruptcy if the good
is worth less than expected. Therefore similar to the local governments in China,
the auctioneer is also concerned about high hammer prices. For example, in the
1996 radio frequency spectrum auction in the U.S., the winning bids totaled 10.2
billion dollars which were almost three times as high as the prices in previous
spectrum auctions. Unfortunately, many of the winners declared bankruptcy
and the auctioneer raised only 400 million dollars in the next three years.3

Another example is a thief disposing stolen goods or a referee controlling
a sport game in exchange for bribes. Of course, it is advantageous for the
auctioneer (the thief or the referee) to get more income. However the illegality
of his act will easily be exposed as the transaction price rises, and he will be in
prison once it is exposed. Hence the auctioneer also has a non-monotonic utility
function with a unique maximizer and may also dislike high transaction prices.

1http://www.reuters.com/article/us-china-property-nanjing/chinas-nanjing-to-introduce-
price-cap-in-land-auctions-idUSKCN0YI0VL

2The Property Law of the People’s Republic of China passed in 2007 codified that land is
owned by collectivities or by the state.

3See Zheng (2001) and Board (2007).
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The goal of this paper is to study how an auctioneer who has a non-monotonic
utility function with a unique maximizer can use the rejection price to increase
expected utility in first-price and second-price sealed-bid auctions. We also in-
vestigate whether using the rejection price can also increase bidders’ expected
utilities or not. And we further examine which auction does an auctioneer with
non-monotonic utility prefer.

In our model, an auctioneer announces publicly a rejection price before a
given first-price or second-price sealed-bid auction starts. Subsequently, n risk-
neutral bidders bid for an object. At the end of bidding, the bidder with the
highest bid among the bids which do not exceed the rejection price, gets the
object and pays the highest and second-highest one among the bids which do not
exceed the rejection price in the first-price and second-price sealed-bid auctions,
respectively.

For a given first-price or second-price sealed-bid auction with a rejection
price, our approach is first showing an equilibrium bidding behavior which is
based on a natural equilibrium bidding behavior in a standard first-price or
second-price sealed-bid auction.4 And then we show the optimal rejection price
by assuming that the auctioneer believes that all bidders will follow the equi-
librium bidding behavior if he announces a rejection price.

We begin the analysis by considering equilibrium bidding behavior in a
second-price sealed-bid auction with a rejection price in an environment with
independently and identically distributed private values. Since there is no in-
centive for a bidder to bid higher than his private value (suffer a loss) or the
rejection price (be rejected), the optimal strategy for the bidder is bidding the
lower one between his private value and the rejection price. We then study
the optimal rejection price, or utility maximization, from the perspective of the
auctioneer. We show that the optimal rejection price is just the unique maxi-
mizer. Further, we obtain the same conclusion even in the case where bidders’
private values follow different distributions and/or bidders are not risk-neutral.
Clearly, the equilibrium under such a mechanism is inefficient, since the bidder
who values the object most may lose if multiple bids are equal to the rejection
price.

Perhaps more surprisingly, we find that under the optimal rejection price for
the auctioneer, all bidders may be better off. In general, under any rejection
price all bidders will be better off if and only if the bidder with the maximum
value is better off. Therefore, not only the auctioneer but also all bidders will
be better off by using the optimal rejection price, if and only if the bidder with
the maximum value is better off. Namely, the optimal rejection price results in
a Pareto improvement.

We also analyze a first-price sealed-bid auction with a rejection price. By
assuming the equilibrium bidding strategy is non-decreasing, we find that in
the equilibrium bidding strategy there exists a jump point below which bidders
bid the same as the standard model and above which bidders bid the rejection

4Note that standard first-price and second-price sealed-bid auctions can be regarded as
first-price or second-price sealed-bid auctions with infinite rejection prices, respectively.
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price. Why does the jump point exist? Consider the lowest value among all
values with which a bidder bids the rejection price. Note that the equilibrium
winning probability is discontinuous at that value, since the probability of tie at
the rejection price is not zero. Clearly, if the equilibrium bidding strategy were
continuous, the one whose value is lower than that value but sufficiently close to
it, would improve his payoff by bidding the rejection price. So the equilibrium
bidding strategy should be discontinuous at that value.

Similar to the second-price sealed-bid auction, the optimal rejection price
could be the unique maximizer. But due to the discontinuous bidding strategy,
with a lower rejection price bidders are more likely to bid it in a first-price
sealed-bid auction than in a second-price sealed-bid auction, i.e., the auctioneer
have much more probability of receiving the rejection price. Hence the optimal
rejection price will be lower than the unique maximizer if a loss by receiving the
lower rejection price can be negligible. And we also find that it makes a Pareto
improvement to the standard model if and only if the bidder with the maximum
value can be better off.

Finally, we study the preferences of the auctioneer over the two auctions.
In standard auction theory, Matthews (1979) and Waehrer et al. (1998) show
that a risk-averse auctioneer strictly prefers a first-price sealed-bid auction to
a second-price sealed-bid auction. Similarly, we prove that with the optimal
rejection price the auctioneer also strictly prefers a first-price sealed-bid auction
to a second-price sealed-bid auction if he is risk-averse when his revenue is
lower than the maximizer. Further, for a given rejection price, we find that the
distribution function of the auctioneer’s payoff in a first-price sealed-bid auction
is first-order stochastic dominant over that in a second-price sealed-bid auction
for some distribution functions of bidders’ values. Thus, the auctioneer strictly
prefers a first-price sealed-bid auction to a second-price sealed-bid auction as
well. And we also find the case where the auctioneer strictly prefers a second-
price sealed-bid auction to a first-price sealed-bid auction.

Our paper is similar to both the literature on buy prices and the literature
on bid caps (ceiling prices). Within the former literature, Budish and Takeyama
(2001) study a simple model with two bidders and two types, and find that a
risk-neutral auctioneer gains by augmenting his auction with a buy price when
bidders are risk-averse. Hidvegi et al. (2006) and Inami (2011) extended these
results to a model with n bidders where bidders’ types are continuously dis-
tributed and discretely distributed, respectively. Mathews (2003) and Mathews
and Katzman (2006) are particularly related to our work. These papers study
a risk-averse auctioneer facing risk-neutral bidders in an auction with a tempo-
rary buy price. Such an auctioneer can gain from augmenting his auction with
a buy price and this option may result in a Pareto improvement compared to a
standard auction.

Within the literature on bid caps (ceiling prices) which is the most similar
conception to rejection prices, Chowdhury (2008) analyzes a simple second-price
auction with independent private values where the bidders may potentially col-
lude. An optimal policy which includes both a reserve price and an efficient
ceiling price prevents collusion. Gavious et al. (2002) considered bid caps in
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symmetric all-pay auctions and showed that using a bid cap when the bidders
have concave cost functions decreases the average bid. They proved that if the
bidders have convex cost functions and there is a sufficiently large number of
bidders, then the auctioneer, who wishes to maximize the average bid, might
benefit from fixing a bid cap. Sahuguet (2006) studied asymmetric all-pay auc-
tions with private values and showed that capping the bids is profitable for an
auctioneer who wants to maximize the sum of the bids.

Our paper is different in two important ways from the literature mentioned
above. First, in a second-price sealed-bid auction with a rejection price we
assume the payment rule which is the same as ceiling prices that bidders pay
follows a standard second-price sealed-bid auction’s rule, whereas in a second-
price sealed-bid auction with a buy price the winner pays the buy price if he bids
it. Second, the most frequently studied rationales for auctions with a buy price
or a ceiling price are based on bidders’ risk attitudes. Consequently, these mech-
anisms incentivize bidders to bid aggressively to maximize auctioneer’s utility.
On the contrary, we assume bidders are risk-neutral and focus our attention
on an auctioneer whose utility is non-monotonic and has a unique maximizer.
Such an assumption induces the auctioneer to restrain bids to maximize his
utility. In particular, in a second-price sealed-bid auction, the equilibrium bid-
ding strategy and the optimal rejection price are the same regardless of bidders’
risk-attitudes.

This paper is organized as follows. In section 2, we present the basic setting
and assumptions. In section 3, we study a second-price sealed-bid auction with
a rejection price. In section 4, we analyze a first-price sealed-bid auction with
a rejection price. In section 5, we compare the two auctions. In section 6, we
discuss a more general non-monotonic utility. Section 7 concludes.

2 Model

There is one indivisible object for sale, and n potential risk-neutral bidders are
bidding for the object. Bidder i ∈ N = {1, 2, ..., n} assigns a private value of
vi to the object and vi is independently and identically distributed on some
interval [v, v̄] ⊂ [0,∞) according to an increasing distribution function F (·). It
is assumed that F (·) admits a continuous density f(·) = F ′(·) > 0 and has full
support.

In this paper, we consider that the auctioneer has a non-monotonic utility
function with a unique maximizer. We assume that u(·) is strictly increasing
on the interval [0, v∗] and is strictly decreasing on the interval (v∗,∞), where
v∗ ∈ (v, v̄) denotes the unique maximizer. For tractability, we assume that the
utility function u(·) is continuous on the interval [0,∞). Note that in the case
v∗ ≤ v, the auctioneer is unwilling to participate in the auction since his utility
is strictly decreasing. And in the case v∗ ≥ v̄, the utility function is just same
with the standard assumption. Hence, it is not interesting to study these two
cases.

Before a given kth-price sealed-bid auction starts, for k ∈ {I, II}, the auction-
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eer can announce a rejection price Rk ∈ (v, v̄). That is, the auctioneer rejects
bids above Rk. At the end of the auction, the bidder who gives the highest bid
among the bids which are not rejected wins the object and pays the kth-highest
one among the bids which are not rejected. We assume that if there is a tie the
object goes to each winning bidder with equal probability, i.e., when l bids tie,
each winning bidder gets the object with probability 1/l, for any l ∈ N .

In a given kth-price sealed-bid auction with a rejection price Rk, we let bi
denote bidder i’s bid for every i ∈ N and b = (b1, b2, ..., bn) denote the bid
profile. Notice that we assume v ≥ 0, so that no bidder would bid a negative
amount. So we can let bi1{bi≤Rk} denote bidder i’s bid after screening by a
rejection price Rk, for every i ∈ N and k ∈ {I, II}, where5

1{bi≤Rk} =

{
1 if bi ≤ Rk

−1 if bi > Rk.

Since the bids which are higher than the rejection price become minus after
screening, the bidder who submits such a bid must lose in the auction. And
we let l(bi) = |{bj |bj = bi, j = 1, 2, ..., n}| denote the number of bids which are
equal to bi. For every i ∈ N and k ∈ {I, II}, we let uk(vi, b) denote the utility
of the bidder i with the bid profile b. More concretely,

uI(vi, b) =

(vi − bi)/l(bi) if bi1{bi≤RI} ≥ max
j ̸=i

{bj1{bj≤RI}, 0}

0 if bi1{bi≤RI} < max
j ̸=i

{bj1{bj≤RI}, 0}.

in a first-price sealed-bid auction with a rejection price RI, and

uII(vi, b) =

(vi −max
j ̸=i

{bj1{bj≤RII}, 0})/l(bi) if bi1{bi≤RII} ≥ max
j ̸=i

{bj1{bj≤RII}, 0}

0 if bi1{bi≤RII} < max
j ̸=i

{bj1{bj≤RII}, 0}

in a second-price sealed-bid auction with a rejection price RII.

3 Second-price sealed-bid auction with rejection
prices

In this section, we study a second-price sealed-bid auction with a rejection price
RII. In this paper, we consider extending a natural equilibrium bidding strategy
in a standard second-price sealed-bid auction to our model. Then the bidding
strategy in a second-price auction with a rejection price is straightforward.

Proposition 1. Equilibrium strategies in a second-price sealed-bid auction with
a rejection price RII are given by βII(vi) = min {vi, RII}.

5If we assume a standard indicator function, a bid which equals zero and a bid which is
higher than the rejection price cannot be distinguished after screening.
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Proof. Consider bidder i ∈ N and suppose that pi = max
j ̸=i

{bj1{bj≤RII}, 0} is the

highest competing bid after screening by the rejection price. By bidding βII(vi),
bidder i will win if βII(vi) > pi and not if βII(vi) < pi.

Suppose, however, that he bids an amount bi < βII(vi). If βII(vi) > bi ≥ pi,
then he still wins and his profit is vi − pi. If pi > βII(vi) > bi, he still loses.
However, if βII(vi) ≥ pi > bi, then he loses, whereas if he had bid βII(vi), he
would have made a non-negative profit. Thus, bidding less than βII(vi) can
never increase his profit. Suppose, on the contrary, his bid bi is higher than
βII(vi). Clearly, there is no incentive for him to bid higher than RII (be rejected).
On the one hand, if RII ≥ bi ≥ pi > βII(vi), then he will suffer a loss. On
the other hand, he is indifferent between bidding bi and βII(vi) in the case
that RII ≥ bi > βII(vi) ≥ pi. Thus it is also not profitable to bid higher than
βII(vi).

Proposition 1 states that any bidder bids the lower one between his value
and the rejection price. In this paper, we only focus on this equilibrium bid-
ding strategy. Now we examine what effect such a rejection price has on the
expected utility of the auctioneer. We let UII(RII) denote the expected utility
of the auctioneer in a second-price sealed-bid auction with a rejection price RII.
The following proposition implies that it is optimal for the auctioneer to use
the rejection price and tell the truth, i.e., the auctioneer chooses the optimal
rejection price which equals the unique maximizer.

Proposition 2. (Truth-telling for auctioneer) In a second-price sealed-bid auc-
tion with a rejection price RII, the unique optimal rejection price is R∗

II = v∗.

Proof. The expected utility of the auctioneer with a rejection price RII can be
calculated as follows:

UII(RII) =[1− Fn(RII)− n(1− F (RII))F
n−1(RII)]u(RII)

+ n

∫ RII

v

(1− F (t))u(t)dFn−1(t).

So

UII(v
∗)− UII(RII) =[1− Fn(v∗)− n(1− F (v∗))Fn−1(v∗)]u(v∗)

− [1− Fn(RII)− n(1− F (RII))F
n−1(RII)]u(RII)

+ n

∫ v∗

RII

(1− F (t))u(t)dFn−1(t).
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Notice that u(·) is strictly increasing on [v, v∗], then for any RII ∈ [v, v∗),

UII(v
∗)− UII(RII) > [1− Fn(v∗)− n(1− F (v∗))Fn−1(v∗)]u(v∗)

− [1− Fn(RII)− n(1− F (RII))F
n−1(RII)]u(RII)

+ n

∫ v∗

RII

(1− F (t))u(RII)dF
n−1(t)

= [1− Fn(v∗)− n(1− F (v∗))Fn−1(v∗)][u(v∗)− u(RII)]

> 0.

And since u(·) is strictly decreasing on (v∗, v̄], for any RII ∈ (v∗, v̄],

UII(v
∗)− UII(RII) > [1− Fn(v∗)− n(1− F (v∗))Fn−1(v∗)]u(v∗)

− [1− Fn(RII)− n(1− F (RII))F
n−1(RII)]u(RII)

− n

∫ RII

v∗
(1− F (t))u(v∗)dFn−1(t)

= [1− Fn(RII)− n(1− F (RII))F
n−1(RII)][u(v

∗)− u(RII)]

> 0.

Thus the unique optimal rejection price is R∗
II = v∗.

Remark 1. Proposition 2 holds even if u(·) is discontinuous on the interval
[v, v̄]. The reason is as follows. If u(·) is discontinuous, the only problem is

whether the integral n
∫ RII

v
(1−F (t))u(t)dFn−1(t) exists or not. Notice that u(·)

is monotonic both on the interval [v, v∗] and the interval [v∗, v̄], therefore u(·)
is integrable on the interval [v, v̄]. Since f(·) is also integrable on the interval
[v, v̄], so the integral exists.

Proposition 2 implies that it is optimal for the auctioneer to reject the bids
over the maximizer. Before we give an explanation, let FII(v;RII) denote the
distribution function of the auctioneer’s revenue v in a second-price sealed-bid
auction with a rejection price RII. Then it is easy to see that for any rejection
price RII ∈ [v, v̄],

FII(v;RII) =

{
nFn−1(v)− (n− 1)Fn(v) if RII > v ≥ v

1 if v = RII.

Then FII(v;R
′
II) is first-order stochastic dominant over FII(v;R

′′
II) for any R′

II >
R′′

II. Thus if RII < v∗, the auctioneer prefers the rejection price v∗ to the
rejection price RII, since u(·) is strictly increasing on the interval [v, v∗]. If
RII > v∗, notice that FII(v;RII) = FII(v; v

∗) for any v ∈ [v, v∗) and u(·) is
strictly decreasing on the interval [v∗, v̄], therefore the auctioneer still prefers
the rejection price v∗.
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We, therefore, obtain the optimal rejection price. Note that the auction
becomes inefficient6 with a rejection price, since the object may not end up
in the hands of the bidder who values it the most ex post if there are more
than two bidders whose values are higher than the rejection price. In spite of
this inefficiency, the next proposition shows a condition that is necessary and
sufficient to guarantee all bidders’ ex post expected utilities can be improved
with a rejection price, compared to a standard second-price sealed-bid auction.
To state our next result, we need to introduce the notion of improvement and
some additional notations.

Definition 1. (Pareto improvement for bidders) A kth-price sealed-bid auction
with a rejection price Rk makes a Pareto improvement for bidders to a standard
kth-price sealed-bid auction, if the ex post expected utilities of bidders with any
values are improved and the ex post expected utilities of bidders with at least one
value are strictly improved, where k ∈ {I, II}.

We let uII(v;RII) denote the ex post expected utility of a bidder with value
v ∈ [v, v̄] in a second-price sealed-bid auction with a rejection price RII. With
Proposition 1, we can calculate that7

uII(v;RII) =

{∫ v

v
Fn−1(t)dt if RII > v ≥ v∫ RII

v
Fn−1(t)dt+ 1

n

∑n
i=1 F

n−i(RII)(v −RII) if v̄ ≥ v ≥ RII.

It is easy to see that uII(v; v̄) =
∫ v

v
Fn−1(t)dt denotes the ex post equilibrium

expected utility by a bidder with value v in a standard second-price sealed-bid
auction.

Proposition 3. Using a rejection price RII makes a Pareto improvement for
bidders to a standard second-price sealed-bid auction if and only if uII(v̄;RII) ≥
uII(v̄; v̄), namely ∫ v̄

RII

(
1

n

n∑
i=1

Fn−i(RII)− Fn−1(t))dt ≥ 0.

Proof. Let ∆II(v) = uII(v;RII)− uII(v; v̄), then

∆II(v) =

{
0 if RII > v ≥ v∫ v

RII
( 1n

∑n
i=1 F

n−i(RII)− Fn−1(t))dt if v̄ ≥ v ≥ RII.

6In fact, the efficiency which is defined in standard auction theory does not apply in our
model. In standard auction theory, if the object ends up in the hands of the bidder who values
it the most ex post, the welfare of a standard auction will be maximized. But in our model,
if the auctioneer’s revenue is larger than v∗, the welfare of our model may not be maximized
since the auctioneer’s utility is decreasing in his revenue in this case.

7The probability that a bidder with value v ∈ [RII, v̄] wins the object is
1−Fn(RII)
n(1−F (RII))

=
1
n

∑n
i=1 F

n−i(RII).
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So it suffices to show that ∆II(v) ≥ 0 for any v ∈ [RII, v̄] and ∆II(v) > 0 for
some v ∈ [RII, v̄] if and only if uII(v̄;RII) ≥ uII(v̄; v̄). We take the derivative
with respect to v, then for any v ∈ [RII, v̄]

∆′
II(v) =

1

n

n∑
i=1

Fn−i(RII)− Fn−1(v)

and
∆′′

II(v) = −(n− 1)Fn−2(v)f(v) < 0,

i.e., ∆II(v) is strictly concave on the interval [RII, v̄]. Thus ∆II(v) > min {∆II(RII),∆II(v̄)}
for any v ∈ (RII, v̄). Notice that ∆II(RII) = 0, thus ∆II(v) > 0 for any
v ∈ (RII, v̄) if and only if

∆II(v̄) = uII(v̄;RII)− uII(v̄; v̄) =

∫ v̄

RII

(
1

n

n∑
i=1

Fn−i(RII)− Fn−1(t))dt ≥ 0.

Proposition 3 implies that for a given rejection price if the ex post expected
utility of the bidder with value v̄ can be improved, all bidders’ ex post expected
utilities can be Pareto improved. Consider a bidder with value v̄ and an event
that there are m bidders whose values are higher than the rejection price RII

in the rest, where m = 1, 2, ..., n − 1. In the equilibrium, the bidder wins with
probability 1

m+1 and his payment is RII. It can be regarded as that the bidder

wins with probability 1 but he needs to pay v̄− v̄−RII

m+1 . Notice that in a standard
second-price sealed-bid auction if bidders’ values which are higher than RII are
uniformly distributed and the event that there are m other bidders whose values
are higher than RII happens, he also wins with probability 1 and his payment is∫ v̄

RII
td( t−RII

v̄−RII
)m = v̄− v̄−RII

m+1 . And if all the other bidders’ values are lower than
RII, he gets the same ex post expected utilities both in a standard second-price
sealed-bid auction and in a second-price sealed-bid auction with a rejection price
RII. Therefore his ex post expected utility can be written as

uII(v̄;RII) =

∫ RII

v

Fn−1(t)dt+

∫ v̄

RII

((1− F (RII))
t−RII

v̄ −RII
+ F (RII))

n−1dt.

Compared to uII(v̄; v̄) =
∫ v̄

v
Fn−1(t)dt, the following corollary is straightforward.

Corollary 1. Using a rejection price RII makes a Pareto improvement for
bidders to a standard second-price sealed-bid auction if for any v ∈ [RII, v̄]

F (v) ≤ (1− F (RII))
v −RII

v̄ −RII
+ F (RII).

Proof. By Proposition 3, it suffices to show that uII(v̄;RII) ≥ uII(v̄; v̄). By the
condition,

uII(v̄;RII)−uII(v̄; v̄) =

∫ v̄

RII

[((1−F (RII))
t−RII

v̄ −RII
+F (RII))

n−1−Fn−1(t)]dt ≥ 0.
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Corollary 1 implies that using a rejection price RII makes a Pareto improve-
ment for bidders to a standard second-price sealed-bid auction if the distribution
function F (·) first-order stochastic dominates a distribution function which is
the same as F (·) on the interval [v,RII] and in which bidders’ values which are
higher than RII are uniformly distributed.

Based on Propositions 2 and 3, we can show that using the optimal rejection
price can result in a Pareto improvement, compared to a standard second-price
sealed-bid auction. Before showing the result, we give the definition of the
Pareto improvement.

Definition 2. (Pareto improvement) A kth-price sealed-bid auction with a re-
jection price Rk makes a Pareto improvement to a standard kth-price sealed-bid
auction if it makes a Pareto improvement for bidders and the expected utility of
the auctioneer is improved, where k ∈ {I, II}.

Theorem 1. Using the optimal rejection price R∗
II = v∗ makes a Pareto im-

provement to a standard second-price sealed-bid auction if and only if∫ v̄

v∗
(
1

n

n∑
i=1

Fn−i(v∗)− Fn−1(t))dt ≥ 0.

Proof. Clearly, due to the Proposition 3, the ex post expected utilities of bid-
ders are improved by the optimal rejection price. Thus, we only need to
show the expected utility of the auctioneer is improved. Note that UII(v̄) =

n
∫ v̄

v
(1− F (t))u(t)dFn−1(t) denotes the auctioneer’s expected utility in a stan-

dard second-price sealed-bid auction. And we have UII(v
∗) > UII(v̄) in Propo-

sition 2.

Corollary 2. Using the optimal rejection price R∗
II = v∗ makes a Pareto im-

provement to a standard second-price sealed-bid auction if for any v ∈ [v∗, v̄]

F (v) ≤ (1− F (v∗))
v − v∗

v̄ − v∗
+ F (v∗).

Proof. This corollary holds by Corollary 1 and Theorem 1.

3.1 General second-price sealed-bid auction with rejection
prices

In standard auction theory, the conclusions of a second-price sealed-bid auc-
tion such as the equilibrium bidding strategies do not depend on bidders’ risk-
attitudes. Therefore, in this subsection, we investigate a more general second-
price sealed-bid auction with a rejection price and show that the rejection prices
work regardless of bidders’ risk-attitudes.

Specifically, this subsection assumes that bidder i ∈ N assigns a value of vi
to the object and each vi is independently distributed on some interval [v, v̄] ⊂

11



[0,∞) according to an increasing distribution function Fi(·). It is assumed that
Fi(·) admits a continuous density fi(·) = F ′

i (·) > 0 and has full support. We let
ui(·) denote the utility function of bidder i. We use the same notation in the
original version besides what we mentioned above. Therefore, we assume the
utility of bidder i who bids bi with value vi, for every i ∈ N , is

ui(vi, b) =

ûi(vi −max
j ̸=i

{bj1{bj≤RII}, 0})/l(bi) if bi1{bi≤RII} ≥ max
j ̸=i

{bj1{bj≤RII}, 0}

0 if bi1{bi≤RII} < max
j ̸=i

{bj1{bj≤RII}, 0}

in a general second-price auction with a rejection price RII, where ûi(·) is any
strictly increasing function with ûi(0) = 0.

Although these assumptions are much weaker than the original version, we
can have the same conclusion in bidders’ and the auctioneer’s behavior.

Proposition 4. (General truth-telling for the auctioneer) In a general second-
price auction with a rejection price RII, it is a symmetric equilibrium bidding
strategy to bid according to βII(vi) = min {vi, RII}, for any i ∈ N . And the
optimal rejection price is R∗

II = v∗.8

Proof. First, we consider the equilibrium bidding strategy. Clearly, there is
no incentive for bidder i to bid higher than vi (may suffer a loss) or RII (be
rejected), for every i ∈ N . Suppose that bidder i bids an amount bi < βII(vi).
On the one hand, if bidding βII(vi) leads to lose, he loses by bidding bi, too.
One the other hand, note that ûi(·) is a strictly increasing function, bidder i can
gain his winning probability by bidding βII(vi) and his expected utility gains
from the increment of winning probability is positive. Thus, bidding less than
βII(vi) can never be an optimal strategy for bidder i, i.e., bidder i’s bidding
strategy is βII(vi) = min {vi, RII}.

Therefore the auctioneer’s expected utility can be computed as follows:

UII(RII) =[1−G(RII)−
n∑

i=1

(1− Fi(RII))G−i(RII)]u(RII)

+
n∑

i=1

∫ RII

v

(1− Fi(t))u(t)dG−i(t),

8Similarly to the original version, this proposition also holds even if u(·) is discon-
tinuous on the interval [v, v̄]. This is because the only problem is the existence of∑n

i=1

∫RII
v (1− Fi(t))u(t)dG−i(t), which is solved by the monotonicity of u(·) and the in-

tegrability of fi(·), where i ∈ N and G−i(·) =
∏n

j ̸=i Fj(·).
The proof also applies to the case v∗ ≥ v̄ and implies that a rejection price (or ceiling price)
fails to increase the auctioneer’s utility in a second-price sealed-bid auction with any assump-
tion about bidders’ and the auctioneer’s attitude to risk.
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where G(·) =
∏n

i=1 Fi(·) and G−i(·) =
∏n

j ̸=i Fj(·). So

UII(v
∗)− UII(RII) =[1−G(v∗)−

n∑
i=1

(1− Fi(v
∗))G−i(v

∗)]u(v∗)

− [1−G(RII)−
n∑

i=1

(1− Fi(RII))G−i(RII)]u(RII)

+

n∑
i=1

∫ v∗

RII

(1− Fi(t))u(t)dG−i(t).

Notice that u(·) is strictly increasing on the interval [v, v∗]. Then for any RII ∈
[v, v∗),

UII(v
∗)− UII(RII) > [1−G(v∗)−

n∑
i=1

(1− Fi(v
∗))G−i(v

∗)]u(v∗)

− [1−G(RII)−
n∑

i=1

(1− Fi(RII))G−i(RII)]u(RII)

+
n∑

i=1

∫ v∗

RII

(1− Fi(t))u(RII)dG−i(t)

= [1−G(v∗)−
n∑

i=1

(1− Fi(v
∗))G−i(v

∗)][u(v∗)− u(RII)]

> 0.

And since u(·) is strictly decreasing on the interval (v∗, v̄], for any RII ∈ (v∗, v̄],

UII(v
∗)− UII(RII) > [1−G(v∗)−

n∑
i=1

(1− Fi(v
∗))G−i(v

∗)]u(v∗)

− [1−G(RII)−
n∑

i=1

(1− Fi(RII))G−i(RII)]u(RII)

−
n∑

i=1

∫ RII

v∗
(1− Fi(t))u(v

∗)dG−i(t)

= [1−G(RII)−
n∑

i=1

(1− Fi(RII))G−i(RII)][u(v
∗)− u(RII)]

> 0.

Thus the optimal rejection price is R∗
II = v∗.
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4 First-price sealed-bid auction with rejection
prices

We analyze a first-price sealed-bid auction with a rejection price by the same
steps as the second-price sealed-bid auction with a rejection price RI. Let β(v)
denote the equilibrium bidding strategy which is bidden by a bidder with value
v ∈ [v, v̄] in a standard first-price sealed-bid auction, i.e.,

β(v) = (

∫ v

v

tdFn−1(t))/Fn−1(v).

Based on Proposition 1, we may conjecture an equilibrium bidding strate-
gy such that some bidders bid the rejection price and the others follow β(v).
Therefore, for a given rejection price RI, there exists some value vJ that bidders
whose values are higher than vJ bid the rejection price and the others (whose
value is lower than vJ ) follow β(v). And the bidder with value vJ must be
indifferent between bidding the rejection price RI and the standard bid β(vJ ).
The following lemma shows that in such an equilibrium bidding strategy, the
value vJ uniquely exists if RI ∈ (v, β(v̄)) and it is strictly increasing in RI.

Lemma 1. For any given RI ∈ (v, β(v̄)), there uniquely exists vJ ∈ (v, v̄) which
satisfies

Fn−1(vJ)(vJ − β(vJ )) =
1

n

n∑
i=1

Fn−i(vJ )(vJ −RI).

And dvJ
dRI

> 0 when RI ∈ (v, β(v̄)).

Proof. For a given RI ∈ (v, β(v̄)), let

H(v) =
1

n

n∑
i=1

Fn−i(v)(v −RI)− Fn−1(v)(v − β(v)),

where v ∈ (v, v̄). We show that H(v) has only one zero point. We take the
derivative with respect to v,

H ′(v) = [
f(v)(v −RI)

1− F (v)
+ 1][

1

n

n∑
i=1

Fn−i(v)− Fn−1(v)].

Notice that 1
n

∑n
i=1 F

n−i(v) > Fn−1(v) for any v ∈ (v, v̄), so H ′(v) > 0 for any
v ∈ [RI, v̄), i.e., H(v) is strictly increasing on the interval [RI, v̄). Further, since
β(v) < v for any v ∈ (v, v̄) and β(v) is strictly increasing in v,9 we can get

H(β−1(RI)) = [
1

n

n∑
i=1

Fn−i(β−1(RI))− Fn−1(β−1(RI))](β
−1(RI)−RI) > 0

9See Krishna (2009).
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and
H(RI) = −Fn−1(RI)(RI − β(RI)) < 0.

So there uniquely exists v ∈ (RI, v̄) such that H(v) = 0. Notice that β(v) < v
for any v ∈ (v, v̄), then H(v) < 0 for any v ∈ (v,RI]. Therefore, H(v) has only
one zero point, i.e., vJ ∈ (v, v̄) uniquely exists.

Now, we show that dvJ

dRI
> 0. Since

Fn−1(vJ)(vJ − β(vJ )) =
1

n

n∑
i=1

Fn−i(vJ )(vJ −RI),

take the derivative of both sides with respect to vJ , we can get

n∑
i=1

Fn−i(vJ)
dRI

dvJ
=

n−1∑
i=1

(n− i)Fn−i−1(vJ )f(vJ )(vJ −RI)

+

n∑
i=1

Fn−i(vJ)− nFn−1(vJ).

Due to vJ > RI and 1
n

∑n
i=1 F

n−i(v) > Fn−1(v), we can get dRI

dvJ
> 0. Hence

dvJ
dRI

> 0.

Based on Lemma 1, we can have the next proposition that in some cases
the conjecture that for a given rejection price RI the bidders whose values are
higher than vJ bid the rejection price and the others follow β(v) is right.

Proposition 5. Equilibrium strategies in a first-price sealed-bid auction with a
rejection price RI are given by,
(i) if RI < β(v̄),

βI(vi) =

{
β(vi) if vi < vJ

RI if vi ≥ vJ

where vJ is a jump point which satisfies that

Fn−1(vJ)(vJ − β(vJ )) =
1

n

n∑
i=1

Fn−i(vJ )(vJ −RI);

(ii) if RI ≥ β(v̄), for every vi ∈ [v, v̄]

βI(vi) = β(vi).

Proof. Obviously, if RI ≥ β(v̄), the rejection price can not work and bidders bid
following the standard model, i.e., βI(vi) = β(vi). Thus, we only need to prove
the case RI < β(v̄).
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Suppose that all but bidder i follow the strategy given in the statement and
let ui(vi, (bi, (βI)−i)) denote bidder i’s ex post expected utility when his bid is
bi. Then the ex post expected utility of bidder i can be computed:

ui(vi, (bi, (βI)−i)) =



0 if bi < v

Fn−1(β−1(bi))(vi − bi) if β(vJ ) ≥ bi ≥ v

Fn−1(vJ)(vi − bi) if RI > bi > β(vJ )
1
n

∑n
i=1 F

n−i(vJ )(vi −RI) if bi = RI

0 if bi > RI.

Clearly, it is not optimal for bidder i to bid higher than RI or lower than v.
On the one hand, if bidder i’s value is vi < vJ , note that the utility with
bi ≤ β(vJ ) is same as the standard model, so we have ui(vi, (β(vi), (βI)−i)) ≥
ui(vi, (bi, (βI)−i)) for any bi ≤ β(vJ ). We also have, for any RI > bi > β(vJ ),

ui(vi, (β(vi), (βI)−i)) ≥ Fn−1(vJ)(vi − β(vJ)) > Fn−1(vJ)(vi − bi)

and

ui(vi, (β(vi), (βI)−i)) ≥ Fn−1(vJ)(vi − β(vJ))

> Fn−1(vJ)(vJ − β(vJ)) +
1

n

n∑
i=1

Fn−i(vJ)(vi − vJ)

=
1

n

n∑
i=1

Fn−i(vJ)(vi −RI).

Hence, it is optimal for bidder i with value vi < vJ to bid β(vi).
On the other hand, if bidder i’s value is vi ≥ vJ , for any RI > bi > β(vJ )

ui(vi, (RI, (βI)−i)) =
1

n

n∑
i=1

Fn−i(vJ)(vJ −RI) +
1

n

n∑
i=1

Fn−i(vJ)(vi − vJ )

= Fn−1(vJ)(vJ − β(vJ)) +
1

n

n∑
i=1

Fn−i(vJ)(vi − vJ )

≥ Fn−1(vJ)(vJ − β(vJ)) + Fn−1(vJ)(vi − vJ )

> Fn−1(vJ)(vi − bi)

and for any bi ≤ β(vJ)

ui(vi, (RI, (βI)−i)) ≥ Fn−1(vJ)(vi − β(vJ))

= Fn−1(vJ)(vJ − β(vJ)) + Fn−1(vJ )(vi − vJ)

≥ Fn−1(β−1(bi))(vJ − bi) + Fn−1(vJ)(vi − vJ)

≥ Fn−1(β−1(bi))(vi − bi).

Hence, it is optimal for bidder i with value vi ≥ vJ to bid RI.
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Proposition 5 implies that there exists a jump point if the rejection price
works (RI < β(v̄)), i.e., such a rejection price induces some bidders bid higher
than they bid in the standard model. One may imagine that the bidders might
bid β̂I(vi) = min {β(vi), RI} like the bidding strategy βII(vi). In this case, a
bidder whose value is lower than β−1(RI) can win the object only when all the
other bidders’ values are lower than his. However a bidder with value β−1(RI)
not only can win the object when all the other bidders’ values are lower than his,
but also may win the object when there exists some bidder whose value is higher
than his. Notice that his profit is positive when he wins since RI < β−1(RI).
So the ex post expected utility of a bidder is discontinuous at v = β−1(RI) in
this case. Then by the same reason, a bidder whose value is lower than β−1(RI)
and sufficiently closes to it prefers bidding the rejection price to bidding the
bid in the standard model. Therefore, in an equilibrium, the ex post expected
utility of a bidder should be continuous at the lowest value among all values
with which a bidder bids the rejection price.

In this section, we only focus on the equilibrium bidding strategy in Proposi-
tion 5. We now examine what effect such a rejection price has on the auctioneer’s
expected utility. The following proposition states that it is profitable for an auc-
tioneer to set the optimal rejection price not higher than the maximizer, if the
maximizer is lower than the maximum equilibrium bid in a standard model.
We could let vJ (RI) denote the jump point with a rejection price RI by Lemma
1 and the implicit function theorem. For notational simplicity, we drop RI in
vJ(RI) when there is no ambiguity.

Proposition 6. In a first-price sealed-bid auction with a rejection price RI,
if v∗ < β(v̄), the optimal rejection price is R∗

I ∈ (v, v∗]. Moreover, if u(·) is
differentiable at v∗, then the optimal rejection price is R∗

I ∈ (v, v∗).

Proof. First, we show the former statement. The auctioneer’s expected utility
with a rejection price RI can be calculated as follows:

UI(RI) =

{
[1− Fn(vJ (RI))]u(RI) +

∫ vJ (RI)

v
u(β(t))dFn(t) if RI < β(v̄)∫ v̄

v
u(β(t))dFn(t) if RI ≥ β(v̄).

Due to Lemma 1, we have vJ(RI) > vJ(v
∗), for any RI ∈ (v∗, β(v̄)]. Note that

u(v∗) > u(v) for any v ∈ (v∗, v̄], so for any RI ∈ (v∗, β(v̄)]

UI(v
∗)− UI(RI) = [1− Fn(vJ(v

∗))]u(v∗)− [1− Fn(vJ (RI))]u(RI)

−
∫ vJ (RI)

vJ (v∗)

u(β(t))dFn(t)

> [Fn(vJ(RI))− Fn(vJ(v
∗))]u(v∗)−

∫ vJ (RI)

vJ (v∗)

u(β(t))dFn(t)

=

∫ vJ (RI)

vJ (v∗)

[u(v∗)− u(β(t))]dFn(t)

> 0.
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For any RI ∈ (β(v̄), v̄], it is easy to know that UI(RI) = UI(β(v̄)) < UI(v
∗).

And since u(·) is strictly increasing on the interval [v, v∗], then U(v∗) > u(v) =
U(v). Since UI(RI) is continuous on the interval [v, β(v̄)], therefore, there exists
R∗

I ∈ (v, v∗] such that UI(R
∗
I ) = max

RI∈[v,v̄]
UI(RI).

Now, we show the latter statement. Since u(·) is differentiable at v∗ and v∗

is the maximizer, so we have u′(v∗) = 0 and UI(·) is also differentiable at v∗.

Lemma 1 implies β(vJ (v
∗)) < v∗ < vJ(v

∗) and dvJ (v
∗)

dRI
> 0.10 Then

dUI(v
∗)

dRI
= nFn−1(vJ(v

∗))f(vJ (v
∗))[u(β(vJ(v

∗)))− u(v∗)]
dvJ(v

∗)

dRI

+ [1− Fn(vJ(v
∗))]u′(v∗)

= nFn−1(vJ(v
∗))f(vJ (v

∗))[u(β(vJ(v
∗)))− u(v∗)]

dvJ(v
∗)

dRI

< 0.

This implies that there exists RI ∈ (v, v∗) such that UI(RI) > UI(v
∗). Fur-

ther, by the former statement, there exists R∗
I ∈ (v, v∗) such that UI(R

∗
I ) =

max
RI∈[v,v̄]

UI(RI).

Remark 2. If v∗ < β(v̄) and u(·) is linear on the interval [v, v∗], the optimal
rejection price in a first-price sealed-bid auction is R∗

I = v∗. The reason is as
follows. It suffices to show that R∗

I ≥ v∗ by the former statement of Proposition
6. By the definition of vJ(RI), we have

RI = vJ(RI)−
n[1− F (vJ(RI))]F

n−1(vJ(RI))[vJ (RI)− β(vJ(RI))]

1− Fn(vJ(RI))
.

So by the linearity, the auctioneer’s expected utility with a rejection price RI is

UI(RI) = u{[1− Fn(vJ(RI))]RI +

∫ vJ (RI)

v

β(t)dFn(t)}

= u{[1− Fn(vJ(RI))]vJ(RI) +

∫ vJ (RI)

v

β(t)dFn(t)

− n[1− F (vJ(RI))]F
n−1(vJ(RI))[vJ(RI)− β(vJ (RI))]}

for any RI ∈ [v, v∗]. Therefore for any RI ∈ (v, v∗),

dUI(RI)

dRI
= u′(RI)[1−F (vJ(RI))][

n∑
i=1

Fn−i(vJ(RI))−nFn−1(vJ (RI))]
dvJ(RI)

dRI
> 0.

And due to the continuity of UI(RI), we have UI(v
∗) > UI(RI) for any RI ∈

[v, v∗). Hence, R∗
I ≥ v∗.

10See the proof of Lemma 1.
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Proposition 6 implies that the optimal rejection price is not higher than the
maximizer. Before we give an explanation, let FI(v;RI) denote the distribution
function of the auctioneer’s revenue v in a first-price sealed-bid auction with a
rejection price RI. It is easy to see that if RI ∈ [v, β(v̄)),

FI(v;RI) =


Fn(β−1(v)) if β(vJ(RI)) > v ≥ v

Fn(vJ (RI)) if RI > v ≥ β(vJ (RI))

1 if v = RI

and if RI ∈ [β(v̄), v̄],
FI(v;RI) = Fn(β−1(v))

for any v ∈ [v, β(v̄)]. For a rejection price RI > v∗, notice that FI(v; v
∗) =

FI(v;RI) for any v ∈ [v, β(vJ (v
∗)) and u(v∗) > u(v) for any v ∈ (v∗, v̄]. There-

fore, the auctioneer will get higher expected utility with the rejection price v∗

than with the rejection price RI, i.e., the optimal rejection price R∗
I cannot be

higher than v∗.
For the case where u′(v∗) = 0, notice that the jump point is increasing in the

rejection price, so that a rejection price which is lower than v∗ makes bidders
more likely to bid it, i.e., the auctioneer has a greater probability of receiving
the rejection price. The increment of the probability brings a positive gain to
the expected utility, but there is also a loss by receiving the lower rejection
price. Because u′(v∗) = 0, if the lower rejection price is sufficiently close to v∗,
then the loss can be negligible and there is only a gain to the expected utility.
Hence the optimal rejection price is lower than the maximizer in this case. By
the intuition, if the maximizer is larger than β(v̄) but sufficiently close to it,
there also exists an optimal rejection price R∗

I ∈ (v, β(v̄)).11

Similarly to the second-price auction with a rejection price, we also want to
know whether this mechanism could make a Pareto improvement to a standard
first-price sealed-bid auction or not. Similarly, we let uI(v;RI) denote the ex
post expected utility by a bidder with value v ∈ [v, v̄] in a first-price sealed-bid
auction with a rejection price RI. With Proposition 5, we can calculate that if
RI < β(v̄),

uI(v;RI) =

{∫ v

v
Fn−1(t)dt if vJ > v ≥ v

1
n

∑n
i=1 F

n−i(vJ )(v −RI) if v̄ ≥ v ≥ vJ .

It is easy to see that uI(v; v̄) =
∫ v

v
Fn−1(t)dt denotes the ex post expected utility

by a bidder with value v in a standard first-price auction.

Proposition 7. Using a rejection price RI < β(v̄) makes a Pareto improvement
for bidders to a standard first-price sealed-bid auction if and only if uI(v̄;RI) ≥

11Here is a simple example. There are 2 bidders whose values are i.i.d on [0, 1] according
to a uniform distribution. Let the auctioneer’s utility be u(v) = 1.01v − v2, then it is easy to
see that v∗ = 0.505 > 0.5 = β(v̄) and the optimal rejection price is R∗

I ≈ 0.455 < 0.5.
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uI(v̄; v̄), namely ∫ v̄

vJ

(
1

n

n∑
i=1

Fn−i(vJ )− Fn−1(t))dt ≥ 0.

Proof. Let ∆I(v) = uI(v;RI)− uI(v; v̄), then

∆I(v) =

{
0 if vJ > v ≥ v∫ v

vJ
( 1n

∑n
i=1 F

n−i(vJ )− Fn−1(t))dt if v̄ ≥ v ≥ vJ .

It is suffices to show that ∆I(v) ≥ 0 for any v ∈ [vJ , v̄] and ∆I(v) > 0 for some
v ∈ [vJ , v̄] if and only if uI(v̄;RI) ≥ uI(v̄; v̄). We take the derivative with respect
to v, then for any v ∈ [vJ , v̄]

∆′
I(v) =

1

n

n∑
i=1

Fn−i(vJ )− Fn−1(v)

and
∆′′

I (v) = −(n− 1)Fn−2(v)f(v) < 0,

i.e., ∆I(v) is strictly concave on the interval [vJ , v̄]. Thus ∆I(v) > min {∆I(vJ),∆I(v̄)}
for any v ∈ (vJ , v̄). Notice that ∆I(vJ) = 0, thus ∆I(v) > 0 for any v ∈ (vJ , v̄)
if and only if ∫ v̄

vJ

(
1

n

n∑
i=1

Fn−i(vJ )− Fn−1(t))dt ≥ 0.

If RI < β(v̄), similarly to uII(v̄;RII), uI(v̄;RI) can be written as

uI(v̄;RI) =

∫ vJ (RI)

v

Fn−1(t)dt+

∫ v̄

vJ (RI)

[(1−F (vJ(RI)))
t− vJ (RI)

v̄ − vJ(RI)
+F (vJ(RI))]

n−1dt.

Compared to uI(v̄; v̄) =
∫ v̄

v
Fn−1(t)dt, if for any v ∈ [vJ (RI), v̄],

F (v) = (1− F (vJ(RI)))
v − vJ(RI)

v̄ − vJ(RI)
+ F (vJ(RI)),

i.e., value v ∈ [vJ(RI), v̄] is uniformly distributed, then the bidder with the
largest value gets the same ex post expected utility in a standard first-price
sealed-bid auction and in a first-price sealed-bid auction with a rejection price
RI. Then the following corollary is straightforward.

Corollary 3. Using a rejection price RI < β(v̄) makes a Pareto improvement
for bidders to a standard first-price sealed-bid auction if for any v ∈ [vJ(RI), v̄]

F (v) ≤ (1− F (vJ(RI)))
v − vJ(RI)

v̄ − vJ(RI)
+ F (vJ(RI)).
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Proof. By Proposition 7, it suffices to show that uI(v̄;RI) ≥ uI(v̄; v̄). By the
condition,

uI(v̄;RI)−uI(v̄; v̄) =

∫ v̄

vJ (RI)

{[(1−F (vJ(RI)))
t− vJ(RI)

v̄ − vJ(RI)
+F (vJ(RI))]

n−1−Fn−1(t)}dt ≥ 0.

Based on Propositions 6 and 7, we can also show that using the optimal
rejection price can make a Pareto improvement to a standard first-price sealed-
bid auction by the following theorem.

Theorem 2. If v∗ < β(v̄), using the optimal rejection price makes a Pareto
improvement to a standard first-price sealed-bid auction if and only if∫ v̄

v∗
J

(
1

n

n∑
i=1

Fn−i(v∗J )− Fn−1(t))dt ≥ 0,

where v∗J = vJ(R
∗
I ).

Proof. Clearly, due to Proposition 7, the ex post expected utilities of bidders are
improved by the optimal rejection price. And the expected utility of auctioneer
is also improved, since we have UI(R

∗
I ) > UI(v̄) in Proposition 6, where UI(v̄)

denotes the expected utility of the auctioneer in the standard first-price sealed-
bid auction.

Corollary 4. If v∗ < β(v̄), using the optimal rejection price makes a Pareto
improvement to a standard first-price sealed-bid auction if for any v ∈ [v∗J , v̄]

F (v) ≤ (1− F (v∗J ))
v − v∗J
v̄ − v∗J

+ F (v∗J ),

where v∗J = vJ(R
∗
I ).

Proof. This corollary holds by Corollary 3 and Theorem 2.

5 Comparison

In this section, we investigate the preferences of an auctioneer with non-monotonic
utility over the two auctions. In standard auction theory, Matthews (1979) and
Waehrer et al. (1998) show that a risk-averse auctioneer strictly prefers a first-
price sealed-bid auction to a second-price sealed-bid auction under the standard
equilibria. In our model, we draw a similar conclusion to theirs. Before we state
that conclusion, we show their result by the following lemma.

Lemma 2. An auctioneer with a utility function w(·) which is concave on
the interval [v, v̄] prefers a standard first-price sealed-bid auction to a standard
second-price sealed-bid auction, that is,

n

∫ v̄

v

(1− F (t))w(t)dFn−1(t) ≤
∫ v̄

v

w(β(t))dFn(t).
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Moreover, the inequality becomes strict if w(·) is not linear.

Proof. Let ∆(v) = n
∫ v

v
(F (v)− F (t))w(t)dFn−1(t) −

∫ v

v
w(β(t))dFn(t). Then

taking the derivative with respect to v, we have

∆′(v) = nf(v)[

∫ v

v

w(t)dFn−1(t)− Fn−1(v)w(β(v))].

Since w(·) is concave on the interval [v, v̄], by Jensen’s inequality, for any v ∈
[v, v̄] ∫ v

v

w(t)dFn−1(t)

Fn−1(v)
≤ w(

∫ v

v

tdFn−1(t)

Fn−1(v)
) = w(β(v)).

This implies that ∆′(v) ≤ 0 for any v ∈ [v, v̄]. Hence, ∆(v̄) ≤ ∆(v) = 0, i.e.,

n

∫ v̄

v

(1− F (t))w(t)dFn−1(t) ≤
∫ v̄

v

w(β(t))dFn(t).

Moveover, if w(·) is not linear, then∫ v′

v

w(t)dFn−1(t)

Fn−1(v′)
< w(

∫ v′

v

tdFn−1(t)

Fn−1(v′)
) = w(β(v′))

for some v′ ∈ (v, v̄). This implies that ∆′(v′) < 0 for some v′ ∈ (v, v̄). Hence
∆(v̄) < ∆(v) = 0, i.e.,

n

∫ v̄

v

(1− F (t))w(t)dFn−1(t) <

∫ v̄

v

w(β(t))dFn(t).

This lemma is intuitive. Consider the event that a bidder with value v ∈ [v, v̄]
wins the object in a standard kth-price sealed-bid auction, where k ∈ {I, II}.
The bidder’s payment is β(v) in a standard first-price sealed-bid auction and
due to the payment rule his payment is deterministic. His expected payment is
also β(v) in a standard second-price sealed-bid auction, however it is the expec-
tation of the second-highest bid that is random. So a risk-averse auctioneer will
get higher expected utility from this event in a standard first-price sealed-bid
auction. And notice that this event happens with same probability in both auc-
tions, therefore the auctioneer prefers a standard first-price sealed-bid auction
to a standard second-price sealed-bid auction. We apply the same intuition to
our model.

Proposition 8. For a given rejection price R ≤ v∗, if u(·) is concave on the
interval [v,R], then an auctioneer strictly prefers a first-price sealed-bid auction
to a second-price sealed-bid auction, that is, UI(R) > UII(R).
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Proof. Let

w(v;R) =

{
u(v) if R ≥ v ≥ v

u(R) if v̄ ≥ v > R.

Obviously, w(v;R) is concave but not linear on the interval [v, v̄] since u(·) is
strictly increasing on the interval [v,R]. Then we have

UII(R) = n

∫ v̄

v

(1− F (t))w(t;R)dFn−1(t)

and if R ∈ [β(v̄), v̄]

UI(R) =

∫ v̄

v

w(β(t);R)dFn(t).

Notice that u(·) is strictly increasing on the interval [v,R] and R > β(vJ (R)).
Thus if R ∈ [v, β(v̄))

UI(R) > [1− Fn(β−1(R))]u(R) +

∫ β−1(R)

v

u(β(t))dFn(t)

=

∫ v̄

v

w(β(t);R)dFn(t).

Therefore, by Lemma 2, we have for any R ≤ v∗,

UI(R) ≥
∫ v̄

v

w(β(t);R)dFn(t) > n

∫ v̄

v

(1− F (t))w(t;R)dFn−1(t) = UII(R).

In a first-price sealed-bid auction with a rejection price R ∈ [v, v̄], if bidders

bid following the strategy β̂I(v) = min{β(v), R}, then the auctioneer’s expected

utility is equal to
∫ v̄

v
w(β(t);R)dFn(t). By applying Lemma 2 to two standard

auctions with a concave but non-linear utility function w(v;R), we see that
the expected utility is greater than the auctioneer’s equilibrium expected utility
under the standard second-price sealed-bid auction, which is equal to UII(R)
in our setting. In fact, in a first-price sealed-bid auction, some bidders bid
higher than they bid following β̂I(v) = min{β(v), R}. Since R ≤ v∗ and u(·) is
strictly increasing on the interval [v, v∗], the auctioneer will get higher expected
utility than that case. Hence, the auctioneer prefers a first-price sealed-bid
auction. Notice that in Proposition 8, R could be equal to v∗ which is the
optimal rejection price in a second-price sealed-bid auction, then the following
proposition is straightforward.

Proposition 9. If u(·) is concave on the interval [v, v∗], then with the optimal
rejection price12 an auctioneer strictly prefers a first-price sealed-bid auction to
a second-price sealed-bid auction, that is, max

R∈[v,v̄]
UI(R) > UII(v

∗).

12In a first-price sealed-bid auction, if v∗ ≥ β(v̄) the auctioneer’s expected utility may be
maximized on the interval [β(v̄), v̄], i.e., it may not be optimal for the auctioneer to use a
rejection price. In this case, we regard any R ∈ [β(v̄), v̄] as his optimal rejection price.
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Proof. By Proposition 8, max
R∈[v,v̄]

UI(R) ≥ UI(v
∗) > UII(v

∗).

We reach the above conclusions based on the auctioneer’s risk-attitude. Nex-
t, we analyze the preferences of the auctioneer over the two auctions in a different
way. From the auctioneer’s point of view, a kth-price sealed-bid auction with a
rejection price can be regarded as a lottery since the revenue is random, where
k ∈ {I, II}. Recall that we let Fk(v;Rk) denote the distribution function of the
auctioneer’s revenue v in a kth-price sealed-bid auction with a rejection price
Rk. The following proposition shows that for a given rejection price R ≤ v∗, if
FI(v;R) is first-order stochastic dominant over FII(v;R) on the range where the
auctioneer’s revenue is lower than β(vJ(R)), the auctioneer prefers a first-price
sealed-bid auction to a second-price sealed-bid auction.

Proposition 10. For a given rejection price R < β(v̄), if R ≤ v∗ and

nFn−1(v)− (n− 1)Fn(v) ≥ Fn(β−1(v))

for any v ∈ [v, β(vJ (R))],13 then an auctioneer strictly prefers a first-price
sealed-bid auction to a second-price sealed-bid auction, that is, UI(R) > UII(R).

Proof. Since R < β(v̄) and for any v ∈ [v, β(vJ(R))]

nFn−1(v)− (n− 1)Fn(v) ≥ Fn(β−1(v)),

then we have
FII(v;R) ≥ FI(v;R)

for any v ∈ [v, β(vJ (R))] and

FII(v;R) > FI(v;R)

for any v ∈ (β(vJ(R)), R). Since u(·) is strictly increasing on the interval [v,R],
then

UI(R)− UII(R) =

∫ R

v

u(t)dFI(t;R)−
∫ R

v

u(t)dFII(t;R) > 0.

By Propositions 2 and 6, we have R∗
I ≤ v∗ = R∗

II if v∗ < β(v̄). Then, the
following proposition can be shown immediately.

Proposition 11. If v∗ < β(v̄) and

nFn−1(v)− (n− 1)Fn(v) ≥ Fn(β−1(v))

for any v ∈ [v, β(vJ(v
∗))], then with the optimal rejection price an auction-

eer strictly prefers a first-price sealed-bid auction to a second-price sealed-bid
auction, that is, UI(R

∗
I ) ≥ UII(v

∗).

13These conditions can be satisfied if n = 2 and F (·) is a uniform distribution function on
[0, 1] and R ≤ 4/9.
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Proof. By Proposition 10, UI(R
∗
I ) ≥ UI(v

∗) > UII(v
∗).

The intuition of the conditions of Propositions 10 and 11 is that the auc-
tioneer will be more likely to acquire a low revenue in a second-price sealed-bid
auction than in a first-price sealed-bid auction. This is because even if the
winner’s private value is high, the auctioneer may acquire a low revenue in a
second-price sealed-bid auction.

The above four propositions show the same preference that the auctioneer
strictly prefers a first-price sealed-bid auction. Notice that Propositions 8 and
9 only depend on the auctioneer’s utility function u(·), and Propositions 10 and
11 only depend on the distribution function F (·) if v∗ < β(v̄). Therefore, in the
case where v∗ < β(v̄), it is difficult to find some cases that an auctioneer prefers
a second-price sealed-bid auction.14

Nonetheless, in the case where v∗ > β(v̄), for any rejection price the upper
bound of the auctioneer’s expected utility in a first-price sealed-bid auction
is u(β(v̄)). Notice that the lower bound of the auctioneer’s expected utility
in a second-price sealed-bid auction with the optimal rejection price is [1 −
Fn(v∗) − n(1 − F (v∗))Fn−1(v∗)]u(v∗), hence with the optimal rejection price
the auctioneer strictly prefers a second-price sealed-bid auction to a first-price
auction if u(v∗) ≥ u(β(v̄))/[1− Fn(v∗)− n(1− F (v∗))Fn−1(v∗)].

6 Discussion

So far, we have assumed that the auctioneer’s utility function is strictly in-
creasing below the unique maximizer and strictly decreasing above the unique
maximizer. In this section, we consider a more general non-monotonic utility
function that u(v∗) > u(v) for any v ∈ [0,∞), where v∗ ∈ (v, v̄). For tractability,
we also assume that u(·) is continuous on the interval [0,∞).

Notice that the equilibrium bidding strategies βI(·) and βII(·) are indepen-
dent of the utility function u(·), therefore, in this section, we focus on the
optimal rejection prices in first-price and second-price sealed-bid auctions. Be-
fore starting our discussion, we additionally assume that maxv∈[0,v] u(v) <
minv∈(v,v∗] u(v) in order to exclude the case that the optimal rejection price
is R∗

k ∈ [0, v], where k ∈ {I, II}. This is because, in that case, the auctioneer
may want to sell the object at a price which is lower than v.

At first, we consider a second-price sealed-bid auction with a rejection price.
Recall that the function FII(v;RII) denotes the distribution function of the
auctioneer’s revenue v in a second-price sealed-bid auction with a rejection price
RII. For a rejection price RII > v∗, notice that FII(v; v

∗) = FII(v;RII) for any
v ∈ [v, v∗) and u(v∗) > u(v) for any v ∈ [0,∞). Therefore, the auctioneer will
get higher expected utility with the rejection price v∗ than with the rejection
price RII, i.e., the optimal rejection price R∗

II cannot be higher than v∗. For a
rejection price RII < v∗, notice that FII(v; v

∗) is first-order stochastic dominant

14In fact, we do not know of an example where an auctioneer prefers a second-price sealed-
bid auction when v∗ < β(v̄).
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over FII(v;RII). So if u(·) is weakly increasing on the interval [v, v∗], then the
auctioneer strictly prefers the rejection price v∗. This is because u(·) is not
constant on the interval [v, v∗] by the assumption that u(v∗) > u(v) for any
v ∈ [0,∞).

Remark 3. In a second-price sealed-bid auction with a rejection price RII, the
optimal rejection price is R∗

II ∈ (v, v∗]. Moreover, if u(·) is weakly increasing on
the interval [v, v∗], then the optimal rejection price is R∗

II = v∗.

For a first-price sealed-bid auction with a rejection price, notice that the
proof of Proposition 6 can be supported by the assumption that u(v∗) > u(v)
for any v ∈ [0,∞), i.e., we can prove the same results as Proposition 6.

Remark 4. In a first-price sealed-bid auction with a rejection price RI, if
v∗ < β(v̄), the optimal rejection price is R∗

I ∈ (v, v∗]. Moreover, if u(·) is
differentiable at v∗, then the optimal rejection price is R∗

I ∈ (v, v∗).

7 Conclusion

We have studied an auctioneer whose utility is non-monotonic and has a unique
maximizer. This kind of auctioneer is not uncommon in the real world, such
as the local government in China. When such an auctioneer sells objects in an
auction, he is willing to use a rejection price to maximize his utility.

First, we analyzed a second-price sealed-bid auction with a rejection price.
The equilibrium bidding strategy in this auction is straightforward. That is,
a bidder bids the lower one between his value and the rejection price. There-
fore, the auctioneer announces truthfully before auction starts, i.e., chooses the
optimal rejection price which equals the unique maximizer. And whatever bid-
ders’ attitudes to risk are, the conclusion is the same. We have compared such
a mechanism to a standard second-price sealed-bid auction, and found that if
the ex post expected utility of the bidder who has the maximum value can
be improved by the rejection price, then all bidders’ ex post expected utilities
can be improved. Further, using the optimal rejection price makes a Pareto
improvement to the standard model.

Second, we studied the behavior of bidders and the auctioneer in a first-price
sealed-bid auction with a rejection price. We found that the rejection price works
only if it is lower than the the maximum equilibrium bid in a standard first-
price sealed-bid auction. We focus attention on the case where it works and
have shown that there exists a jump point in the equilibrium bidding strategy.
In this case, the bid of bidder whose value is lower than the jump point, is the
same as the standard model, and the bidder whose value is higher than it bids
the rejection price. If the maximizer is also lower than maximum equilibrium
bid in a standard model, the optimal rejection price for the auctioneer is not
higher than the maximizer. Moreover, if his utility function is smooth at the
maximizer, due to the existence of the jump point, the optimal rejection price
will be lower than the maximizer. And we also have proved that if the ex post
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expected utility of the bidder with the maximum value can be improved, such
a mechanism makes a Pareto improvement to the standard model.

Finally, we analyzed the auctioneer’s preferences over the two auctions. We
found that the auctioneer strictly prefers a first-price sealed-bid auction to a
second-price sealed-bid auction if the increasing part of his utility function is
concave. The same conclusion can be reached if the distribution of revenues
in a first-price sealed-bid auction is first-order stochastic dominant over it in a
second-price sealed-bid auction. And we also found some cases that the auction-
eer strictly prefers a second-price sealed-bid auction to a first-price sealed-bid
auction.

The natural extension of this work is to consider a more realistic rejecting
strategy that the auctioneer rejects bids with probabilities. One strategy that
can be taken into account is that the auctioneer accepts the bids which are
lower than some amount and rejects the bids which are higher than it with
probability, i.e. the auctioneer can use a mixed strategy. This is because the
auctioneer may not directly announce that amount, i.e., the bidders may acquire
the information about it with uncertainty. Note that, in this paper, we assume
that bidders are able to bid higher than the rejection price, though get nothing.
The rejection price becomes a pure rejecting strategy in a general framework.
Another more realistic rejecting strategy is that the higher bid is more likely to
be rejected, i.e. the rejecting probability is increasing in the bid. We leave the
challenging work for future research.
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